Dualité du problème des marges et ses applications

Nacereddine Belili

Séminaire de probabilités de Strasbourg (1999)

  • Volume: 33, page 371-387

How to cite

top

Belili, Nacereddine. "Dualité du problème des marges et ses applications." Séminaire de probabilités de Strasbourg 33 (1999): 371-387. <http://eudml.org/doc/114023>.

@article{Belili1999,
author = {Belili, Nacereddine},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {optimal couplings; duality theorem; marginal problems},
language = {fre},
pages = {371-387},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Dualité du problème des marges et ses applications},
url = {http://eudml.org/doc/114023},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Belili, Nacereddine
TI - Dualité du problème des marges et ses applications
JO - Séminaire de probabilités de Strasbourg
PY - 1999
PB - Springer - Lecture Notes in Mathematics
VL - 33
SP - 371
EP - 387
LA - fre
KW - optimal couplings; duality theorem; marginal problems
UR - http://eudml.org/doc/114023
ER -

References

top
  1. [1] Abdellaoui, T.Détermination d'un couple optimal du problème de Monge Kantorovich. C. R. Acad. Sci.Paris, 319:981-984, 1994. Zbl0809.60003MR1302803
  2. [2] Abdellaoui, T., ET Heinich, H.Sur la distance de deux lois dans le cas vectoriel. C. R. Acad. Sci.Paris, 319:397-400, 1994. Zbl0808.60008MR1289319
  3. [3] Aldous, D.J.Shift-coupling. Stoch. Proc. Appl, 44:1-14, 1993. Zbl0769.60062MR1198659
  4. [4] Cattiaux, P., ET F. Gamboa. Large deviations and variational theorem for marginal problems. Preprint, 1996. Zbl0922.60029MR1673564
  5. [5] Choquet, G.Forme abstraite du théorème de capacitabilité. Ann. Inst. Fourier, 9:83-89, 1959. Zbl0093.29701MR112844
  6. [6] Cuesta-Albertos, J.A., AND Matrán, C.Notes on the Wasserstein metric in Hilbert spaces. Ann. Probab., 17:1264-1276, 1989. Zbl0688.60011MR1009457
  7. [7] Cuesta-Albertos, J.A., Matrán, C., AND Tuero-Diaz, A. . On lower bounds for the l2-Wasserstein metric in a Hilbert space. J. of Theoretical Prob., 9:263-283, 1996. Zbl0870.60005MR1385397
  8. [8] DALL'AGLIO. Fréchet classes and compatibility of distribution function. Sym. Math., 9:131-150, 1972. Zbl0243.60007MR339311
  9. [9] Dellacherie, C., Meyer, P.A.Probabilités et potentiel. Herman, Paris, 1983. Zbl0526.60001MR727641
  10. [10] Dieudonné, J.Sur le théorème de Hahn-Banach. Rev. Sci, 79:642-643, 1941. Zbl0063.01104MR13223JFM67.0404.03
  11. [11] Doeblin, W.Exposé de la théorie des chaînes simples constantes de Markov à un nombre fini d'états. Rev. Math. Union Interbalkanique, 2:77-105, 1938. Zbl0021.42201JFM64.0538.01
  12. [12] Dowson, D.C., Landau, B.V.The Fréchet distance between multivariate normal distribution. J. Multivariate Anal., 12:450-455, 1982. Zbl0501.62038MR666017
  13. [13] Dudley, R.M.Distances of probability measures and random variables. Ann. Math. Stat., 39:1563-1572, 1968. Zbl0169.20602MR230338
  14. [14] Dudley, R.M.Probability and metrics. Aarhus Univ., Aarhus, 1976. Zbl0355.60004
  15. [15] Dudley, R.M.Real analysis and probability. Chapman and Hall, New York London, 1989. Zbl0686.60001
  16. [16] Dunford, N., AND Schwartz, J.T.Linear Operators. Interscience Publishers, a division of John Wiley and Sons, New York, t. I, 1958. Zbl0084.10402MR1009162
  17. [17] Edwards, D.A.On the existence of probability measures with given marginals. Ann. Inst. Fourier., 28:53-78, 1978. Zbl0377.60004MR513882
  18. [18] Fernique, X.Sur le théorème de Kantorovitch-Rubinstein dans les espaces polonais. Lecture Notes in Mathematics850., Springer, 1981. Zbl0461.60016MR622552
  19. [19] Fréchet, M.Sur les tableaux de corrélation dont les marges sont données. Annales de l'université de Lyon, Sciences., 4:13-84, 1951. Zbl0045.22905
  20. [20] Fréchet, M.Sur la distance de deux lois de probabilité. C. R. Acad. Sci.Paris., 244,1957. Zbl0077.33007MR83210
  21. [21] Gangbo, W., AND Mccann, R.J.The geometry of optimal transportation. Acta. Math., 177:113-161, 1996. Zbl0887.49017MR1440931
  22. [22] Gelbrich, M.. On a formula for the l2-Wasserstein metric between measures on Euclidean and Hilbert spaces. Math. Nachr., 147:185-203, 1990. Zbl0711.60003MR1127323
  23. [23] Givens, C.R., AND Shortt, R.M.A class of Wasserstein metrics for probability distributions. Michigan Math. J., 31:231-240, 1984. Zbl0582.60002MR752258
  24. [24] Goldstein, S.Maximal coupling. Z. Wahrscheinlichkeitstheor. Verw. Geb., 46:193-204, 1979. Zbl0398.60097MR516740
  25. [25] Griffeath, D.A maximal coupling for Markov chains. Z. Wahrscheinlichkeitstheor. Verw. Geb., 31:95-106, 1975. Zbl0301.60043MR370771
  26. [26] Griffeath, D.Uniform coupling of non-homogenous Markov chains. J. Appl. Probability, 12:753-762, 1975. Zbl0322.60061MR386018
  27. [27] Hammersley, I.M., AND Handscomb, D.C.Monte Carlo methods. Meth, London,1964. Zbl0121.35503
  28. [28] Hansel, G., AND Troallic, J.P.Mesures marginales et théorème de Ford-Fulkerson. Z. Wahrscheinlichkeitstheor. Verw. Geb., 43:245-251, 1978. Zbl0369.60010MR501785
  29. [29] Hermes, H., AND Lasalle, J.P.Functional Analysis and Time optimal control. Academic Press, New York and London, 1969. Zbl0203.47504MR420366
  30. [30] Kamae, T., Krengel, U. AND O'Brien. Stochastic inequalities on partially ordered spaces. Ann. Probab., 5:899-912, 1977. Zbl0371.60013MR494447
  31. [31] Kantorovich, L.V.On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.), 37:199-201, 1942. Zbl0061.09705MR9619
  32. [32] Kantorovich, L.V.On a problem of Monge (in russian). Uspekhi Math. Nauk, 3:225-226, 1948. 
  33. [33] Kellerer, H.G.Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheor. Verw. Geb., 67:399-432,1984. Zbl0535.60002MR761565
  34. [34] Kelley, J.L., AND Namioka, I.Linear topological spaces. D. Van Nostrand Company, Princeton, N. I, 1963. Zbl0115.09902MR166578
  35. [35] Knott, M., AND Smith, C.S.On the optimal mapping of distributions. J. Optim. Th. Appl., 43:39-49, 1984. Zbl0519.60010MR745785
  36. [36] Lindvall, T.Lectures on the coupling method. Wiley, New York, 1993. Zbl0850.60019MR1180522
  37. [37] Major, P.On the invariance principle for sums of independent identically distributed random variables. J. Multivariate Anal., 8:487-517, 1978. Zbl0408.60028MR520959
  38. [38] Marshall, A.W., Olkin, I.Inequalities theory of majorization and its applications. Academic Press, New York, 1979. Zbl0437.26007MR552278
  39. [39] Monge, G.Mémoire sur la théorie des déblais et des remblais. Histoires de l'Académie Royale des Sciences de Paris, avec les mémoires de Mathématiques et de Physique pour la même année, pages 257-263, 1781. 
  40. [40] Olkin, I., AND Pukelsheim, F.The distance between two random vectors with given dispertion matrices. Linear Algebra Appl., 48:257-263, 1982. Zbl0527.60015MR683223
  41. [41] Pitman, J.W.On coupling of Markov chains. Z. Wahrscheinlichkeitstheor. Verw. Geb., 35:315-322, 1976. Zbl0356.60003MR415775
  42. [42] Rachev, S.T.The Monge Kantorovich mass transference problem and its stochastic applications. Theory Prob. Appl., 29:647-676, 1984. Zbl0581.60010MR773434
  43. [43] Rachev, S.T.On a problem of Dudley. Soviet. Math. Dokl., 29:162-164, 1984. Zbl0587.60014MR740298
  44. [44] Rachev, S.T.Probability metrics and the stability of the stochastic models. Wiley, New York, 1991. Zbl0744.60004MR1105086
  45. [45] Rachev, S.T., Rüschendorf, L., AND Schief, A.Uniformities for the convergence in law and in probability. J. of Theoretical Prob., 5:33-44, 1992. Zbl0756.60003MR1144726
  46. [46] Ramachandran, D., AND Rüschendorf, L.A general duality theorem for marginal problems. Probab. Theory Relat. Fields, 101:311-319, 1995. Zbl0818.60001MR1324088
  47. [47] Ramachandran, D., AND Rüschendorf, L.Duality and perfect probability spaces. Proceedings of the American mathematical society, 124:2223-2228, 1996. Zbl0863.60005MR1342043
  48. [48] Rockafellar, R.T.Convex Analysis. Princeton, Univ. Press, 1970. Zbl0193.18401MR274683
  49. [49] Rüschendorf, L.Fréchet bounds and their applications. In Kotz S Dall'Aglio, G. and Salinetti G, editors, Advances in probability distributions with given marginals: Beyond the Copulas, pages 141-176. Dordrecht, Kluwer Academic Publishers, 1991. Zbl0744.60005MR1215951
  50. [50] Rüschendorf, L., AND Rachev, S.A characterization of random variables with minimum l2-distance. J. of Multivariate Anal., 32:48-54, 1990. Zbl0688.62034MR1035606
  51. [51] Skala, H.G.The existence of probability measures with given marginals. Ann. Probab., 21:136-142, 1993. Zbl0768.60004MR1207218
  52. [52] Snijders, T.A.B.Antithetic variates for Monte-Carlo estimation of probabilities. Statistics Neerlandica, 38:1-19, 1984. Zbl0552.65097MR751938
  53. [53] Strassen, V.The existence of measures with given marginals. Ann. Math. Stat, 36:423-439, 1965. Zbl0135.18701MR177430
  54. [54] Szugla, A.On minimal metrics in the space of random variables. Theory Prob. Appl., 27:424-430, 1982. Zbl0493.60016MR657942
  55. [55] Thorisson, H.On maximal and distributional coupling. Ann. Probab., 14:873-876, 1986. Zbl0604.60034MR841589
  56. [56] Vallender, S.S.Calculation of the Wasserstein distance between probability distributions on the line. Theory. Prob. Appl., 18:784-786, 1973. Zbl0351.60009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.