Asymptotic estimates for the first hitting time of fluctuating additive functionals of brownian motion

Yasuki Isozaki; Shinichi Kotani

Séminaire de probabilités de Strasbourg (2000)

  • Volume: 34, page 374-387

How to cite

top

Isozaki, Yasuki, and Kotani, Shinichi. "Asymptotic estimates for the first hitting time of fluctuating additive functionals of brownian motion." Séminaire de probabilités de Strasbourg 34 (2000): 374-387. <http://eudml.org/doc/114048>.

@article{Isozaki2000,
author = {Isozaki, Yasuki, Kotani, Shinichi},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {first hitting time; asymptotic estimate},
language = {eng},
pages = {374-387},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Asymptotic estimates for the first hitting time of fluctuating additive functionals of brownian motion},
url = {http://eudml.org/doc/114048},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Isozaki, Yasuki
AU - Kotani, Shinichi
TI - Asymptotic estimates for the first hitting time of fluctuating additive functionals of brownian motion
JO - Séminaire de probabilités de Strasbourg
PY - 2000
PB - Springer - Lecture Notes in Mathematics
VL - 34
SP - 374
EP - 387
LA - eng
KW - first hitting time; asymptotic estimate
UR - http://eudml.org/doc/114048
ER -

References

top
  1. [1] M. Abramowitz, I.A. Stegun, A Handbook of mathematical functions, Dover, New York, 1964. MR167642
  2. [2] J. Bertoin, Lévy processes, Cambridge Univ. Press, Cambridge, 1997. Zbl0938.60005MR1406564
  3. [3] Y. Isozaki, S. Watanabe, An asymptotic formula for the Kolmogorov diffusion and a refinement of Sinai's estimates for the integral of Brownian motion, Proc. Japan Acad., 70A, (1994), pp. 271-276. Zbl0820.60066MR1313176
  4. [4] Y. Isozaki, Asymptotic estimates for the distribution of additive functionals of Brownian motion by the Wiener-Hopf factorization method, J. Math. Kyoto Univ., 36, (1996), pp. 211-227. Zbl0876.60067MR1381548
  5. [5] A.N. Kolmogorov, Zuffälige Bewegungen, Ann. Math. II., 35 (1934), pp. 116-117. Zbl0008.39906MR1503147JFM60.1159.01
  6. [6] S. Kotani, S. Watanabe, Krein's spectral theory of strings and generalized diffusion processes, Functional Analysis in Markov Porcesses, ed. M. Fukushima, Lecture Notes in Mathematics923, pp. 235-259, Springer-Verlag, Berlin, 1982. Zbl0496.60080MR661628
  7. [7] P. McGill, Wiener-Hopf factorization of Brownian motion, Prob. Th. Rel. Fields, 83, (1989), pp. 355-389. Zbl0661.60095MR1017402
  8. [8] H.P. McKean,Jr., A winding problem for a resonator driven by a white noise, J. Math. Kyoto Univ., 2 (1963), pp. 227-235. Zbl0119.34701MR156389
  9. [9] F. Oberhettinger, L. Badii, Tables of Laplace Transforms, Springer-Verlag, Berlin, 1973. Zbl0285.65079MR352889
  10. [10] L.C.G. Rogers, D. Williams, A differential equation in Wiener-Hopf theory, Stochastic analysis and applications, ed. A. Truman, D. Williams, Lecture Notes in Mathematics1095, pp. 187-199, Springer-Verlag, Berlin, 1984. Zbl0552.60076MR777522
  11. [11] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Springer-Verlag, Berlin, 1991. Zbl0731.60002MR1083357
  12. [12] Ya.G. Sinai, Distribution of some functionals of the integral of a random walk, Theor. Math. Phys., 90 (1992), pp. 219-241. Zbl0810.60063MR1182301
  13. [13] V.M. Zolotarev, Mellin-Stieltjes transforms in probability theory, Theor. Prob. Appl., 2 (1957), pp. 433-460. MR108843

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.