A teacher's note on no-arbitrage criteria

Yuri Kabanov; Christophe Stricker

Séminaire de probabilités de Strasbourg (2001)

  • Volume: 35, page 149-152

How to cite

top

Kabanov, Yuri, and Stricker, Christophe. "A teacher's note on no-arbitrage criteria." Séminaire de probabilités de Strasbourg 35 (2001): 149-152. <http://eudml.org/doc/114055>.

@article{Kabanov2001,
author = {Kabanov, Yuri, Stricker, Christophe},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {no-arbitrage criteria; martingale measure; Kreps-Yan theorem},
language = {eng},
pages = {149-152},
publisher = {Springer - Lecture Notes in Mathematics},
title = {A teacher's note on no-arbitrage criteria},
url = {http://eudml.org/doc/114055},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Kabanov, Yuri
AU - Stricker, Christophe
TI - A teacher's note on no-arbitrage criteria
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 149
EP - 152
LA - eng
KW - no-arbitrage criteria; martingale measure; Kreps-Yan theorem
UR - http://eudml.org/doc/114055
ER -

References

top
  1. [1] Dalang R.C., Morton A., Willinger W.Equivalent martingale measures and no-arbitrage in stochastic securities market model. Stochastics and Stochastic Reports, 29 (1990), 185-201. Zbl0694.90037MR1041035
  2. [2] Delbaen F.The Dalang-Morton-Willinger theorem. Preprint. 
  3. [3] Harrison M., Pliska S.Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes and their Applications, 11, (1981), 215-260. Zbl0482.60097MR622165
  4. [4] Jacod J., Shiryaev A.N.Local martingales and the fundamental asset pricing theorem in the discrete-time case. Finance and Stochastics, 2 (1998), 3, 259-273. Zbl0903.60036MR1809522
  5. [5] Kreps D.M.Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Economics, 8 (1981), 15-35. Zbl0454.90010MR611252
  6. [6] Kabanov Yu M., Kramkov D.O.No-arbitrage and equivalent martingale measure : a new proof of the Harrison-Pliska theorem. Probab. Theory its Appl., 39 (1994), 3, 523-527. Zbl0834.60045MR1347191
  7. [7] Rogers L.C.G.Equivalent martingale measures and no-arbitrage. Stochastics and Stochastic Reports, 51 (1994), 41-51. Zbl0851.60042MR1380761
  8. [8] Schachermayer W.A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time. Insurance: Math. Econ., 11 (1992), 1-9. Zbl0781.90010MR1211972
  9. [9] Shiryaev A.N.Essentials of Stochastic Mathematical Finance. World Scientific, 1999. Zbl0926.62100MR1695318
  10. [10] Stricker Ch.Arbitrage et lois de martingale. Annales de l'Institut Henri Poincaré. Probab. et Statist., 26 (1990), 3, 451-460. Zbl0704.60045MR1066088
  11. [11] Yan J.A.Caractérisation d'une classe d'ensembles convexes de L1 et H1. Séminaire de Probabilité XIV. Lect. Notes Math., 784 (1980), 220-222. Zbl0429.60004MR580127

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.