Quantum stochastic calculus for the uniform measure and Boolean convolution

Nicolas Privault

Séminaire de probabilités de Strasbourg (2001)

  • Volume: 35, page 28-47

How to cite

top

Privault, Nicolas. "Quantum stochastic calculus for the uniform measure and Boolean convolution." Séminaire de probabilités de Strasbourg 35 (2001): 28-47. <http://eudml.org/doc/114068>.

@article{Privault2001,
author = {Privault, Nicolas},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Boolean Fock space; noncommutative processes; combinations of annihilators and creators; Boolean Brownian and Poisson processes; Bernoulli processes},
language = {eng},
pages = {28-47},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Quantum stochastic calculus for the uniform measure and Boolean convolution},
url = {http://eudml.org/doc/114068},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Privault, Nicolas
TI - Quantum stochastic calculus for the uniform measure and Boolean convolution
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 28
EP - 47
LA - eng
KW - Boolean Fock space; noncommutative processes; combinations of annihilators and creators; Boolean Brownian and Poisson processes; Bernoulli processes
UR - http://eudml.org/doc/114068
ER -

References

top
  1. [1] Ph. Biane. Calcul stochastique non-commutatif. In Ecole d'été de Probabilités de Saint-Flour, volume 1608 of Lecture Notes in Mathematics. Springer-Verlag, 1993. Zbl0878.60041MR1383121
  2. [2] Ph. Biane. Processes with free increments. Math. Z., 227(1):143-174, 1998. Zbl0902.60060MR1605393
  3. [3] M. Bozejko. Positive definite functions on the free group and the noncommutative Riesz product. Boll. Unione Mat. Ital., A5:13-21, 1986. Zbl0591.43009MR833375
  4. [4] W. Feller. An introduction to probability theory and its applications. Vol. II. John Wiley & Sons Inc., New York, 1966. Zbl0138.10207
  5. [5] J.M. Lindsay. Quantum and non-causal stochastic calculus. Probab. Theory Related Fields, 97:65-80, 1993. Zbl0794.60052
  6. [6] M. Métivier. Semimartingales: a Course on Stochastic Processes. de Gruyter, 1982. Zbl0503.60054MR688144
  7. [7] P.A. Meyer. Quantum Probability for Probabilists, volume 1538 of Lecture Notes in Mathematics. Springer-Verlag, 1993. Zbl0773.60098MR1222649
  8. [8] A.F. Nikiforov and V.B. Uvarov. Special Functions of Mathematical Physics. Birkäuser, 1988. Zbl0624.33001MR922041
  9. [9] K.R. Parthasarathy. An Introduction to Quantum Stochastic Calculus. Birkäuser, 1992. Zbl0751.60046MR1164866
  10. [10] N. Privault. A different quantum stochastic calculus for the Poisson process. Probab. Theory Related Fields, 105:255-278, 1996. Zbl0849.60056MR1392454
  11. [11] N. Privault. Calcul des variations stochastique pour la mesure de densité uniforme. Potential Analysis, 7(2):577-601, 1997. Zbl0894.60047MR1467207
  12. [12] G. Sansone. Orthogonal Functions, Revised English Edition. Interscience publishers, New York, 1959. Zbl0084.06106MR103368
  13. [13] M. Schürmann. Direct sums of tensor products and non-commutative independence. J. Funct. Anal., 133(1):1-9, 1995. Zbl0868.46048MR1351638
  14. [14] R. Speicher. A new example of "independence" and "white noise". Probab. Theory Related Fields, 84:141-159, 1990. Zbl0671.60109MR1030725
  15. [15] R. Speicher and R. Woroudi. Boolean convolution. In D. Voiculescu, editor, Free probability theory. Papers from a workshop on random matrices and operator algebra free products, volume 12 of Fields Inst. Commun., pages 267-279, Toronto, 1995. American Mathematical Society. Zbl0872.46033MR1426845
  16. [16] D. Voiculescu, K. Dykema, and A. Nica. Free random variables. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups, volume 1 of CRM Monograph Series. American Mathematical Society, Providence, RI, 1992. Zbl0795.46049MR1217253

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.