Some consequences of the cyclic exchangeability property for exponential functionals of Lévy processes
Loïc Chaumont; David G. Hobson; Marc Yor
Séminaire de probabilités de Strasbourg (2001)
- Volume: 35, page 334-347
Access Full Article
topHow to cite
topReferences
top- [1] D.J. Aldous: Exchangeability and related topics. Lecture notes in Math., Springer, vol. 1117École d'été de Probabilité de Saint-Flour XIII, 1983. Zbl0562.60042MR883646
- [2] J. Bertoin: Lévy Processes. Cambridge University Press1996. Zbl0861.60003MR1406564
- [3] J. Bertoin: Some elements on Lévy ProcessesHandbook of statistics, Stochastic processes. Theory and methods. D.N.S. Shanbhag, North Holland, to appear (2000). Zbl0982.60042MR1861722
- [4] J. Bertoin, L. Chaumont and M. Yor: Two chain-transformations and their applications to quantiles. J. Appl. Prob.34, (1997), 882-897. Zbl0904.60059MR1484022
- [5] P. Biane: Relations entre pont brownien et excursion renormalisée du mouvement brownien. Ann. Inst. Henri Poincaré22 (1986), 1-7. Zbl0596.60079MR838369
- [6] P. Carmona, F. Petit, M. Yor: Some extensions of the arc sine law as partial consequences of the scaling property of Brownian motion. Prob. Th. Rel. Fields100 (1994), no. 1, 1-29. Zbl0808.60066MR1292188
- [7] L. Chaumont: An extension of Vervaat's transformation and its consequences. J. Theor. Prob., vol. 13, n° 1, p. 259-278 (2000). Zbl0952.60079MR1744984
- [8] A. Dassios: Sample quantiles of stochastic processes with stationary and independent increments and of sums of exchangeable random variables. Ann. App. Probab. vol. 6, No. 3, (1996), 1041-1043. Zbl0860.60025MR1410129
- [9] L.E. Dubins, J. Pitman: A pointwise ergodic theorem for the group of rational rotations. Trans. Amer. Math. Soc.251, 299-308, 1980. Zbl0412.60050MR531981
- [10] C. Donati-Martin, H. Matsumoto, M. Yor: The law of geometric Brownian motion and its integral, revisited; application to conditional moments. Preprint (2000). Zbl1030.91029MR1960566
- [11] C. Donati-Martin, H. Matsumoto, M. Yor: On a striking identity about the exponential functional of the Brownian bridge. To appear in Periodica Math. Hung., (2001). Zbl1062.60080
- [12] P.J. Fitzsimmons and R.K. Getoor: Occupation time distributions for Lévy bridges and excursions. Stoch. Proc. Appl.58, (1995), 73-89. Zbl0837.60071MR1341555
- [13] P.J. Fitzsimmons, J. Pitman and M. Yor: Markovian bridges: construction, Palm interpretation, and splicing. Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), 101-134, Progr. Probab., 33, Birkhäuser Boston, Boston, MA, 1993. Zbl0844.60054MR1278079
- [14] O. Kallenberg: Canonical representation and convergence criteria for processes with interchangeable increments. Zeit. Whahr. verw. Geb.27, 23-36, 1973. Zbl0253.60060MR394842
- [15] F.B. Knight: The uniform law for exchangeable and Lévy process bridges. Hommage a P. A. Meyer et J. Neveu, Astérisque, (1996), 171-188. Zbl0867.60018MR1417982
- [16] F.S. Nasyrov: On local times for functions and stochastic processes I. Theory Probab. Appl. Vol. 40, No. 4, (1995), 702-713. Zbl0909.60057MR1405146
- [17] D. Revuz and M. Yor: Continuous martingales and Brownian motion, Springer, Berlin, Third edition, (1999). Zbl0917.60006MR1725357
- [18] W. Vervaat: A relation between Brownian bridge and Brownian excursion. Ann. Probab.7 (1979), 141-149. Zbl0392.60058MR515820
- [19] M. Yor: The distribution of Brownian quantiles. J. Appl. Prob.32, (1995),405-416. Zbl0829.60065MR1334895