Generalized variational principles

Azzouz Dermoune; Octave Moutsinga

Séminaire de probabilités de Strasbourg (2002)

  • Volume: 36, page 183-193

How to cite


Dermoune, Azzouz, and Moutsinga, Octave. "Generalized variational principles." Séminaire de probabilités de Strasbourg 36 (2002): 183-193. <>.

author = {Dermoune, Azzouz, Moutsinga, Octave},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {pressureless gase equation; conservation law; variational principles},
language = {eng},
pages = {183-193},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Generalized variational principles},
url = {},
volume = {36},
year = {2002},

AU - Dermoune, Azzouz
AU - Moutsinga, Octave
TI - Generalized variational principles
JO - Séminaire de probabilités de Strasbourg
PY - 2002
PB - Springer - Lecture Notes in Mathematics
VL - 36
SP - 183
EP - 193
LA - eng
KW - pressureless gase equation; conservation law; variational principles
UR -
ER -


  1. [1] M. Bardi, L.C. Evans, On Hopf's formula for solutions of Hamilton-Jacobi equations, Nonlinear Anal., 8 (1984), pp. 1373-1381. Zbl0569.35011MR764917
  2. [2] Y. Brenier, E. Grenier, Sticky particles and scalar conservation laws. Siam. J. Numer. Anal. Vol. 35, No. 6, pp. 2317-2328, December 1998. Zbl0924.35080MR1655848
  3. [3] A. Dermoune, Probabilistic interpretation for system of conservation law arising in adhesion particle dynamics. C. R. Acad. Sci.Paris, 1998, tome 5. Zbl0920.60087MR1649309
  4. [4] A. Dermoune, Probabilistic interpretation of sticky particles model. The Annals of Probability, 1999, Vol. 27, No. 3, 1357-1367. Zbl0960.60055MR1733152
  5. [5] A. Dermoune, Sticky particles and propagation of chaos. Nonlinear Analysis45 (2001), 529-541. Zbl0992.60064MR1838945
  6. [6] E. Hopf, The partial differential equation ut + uux = &micro;uxx. Comm. Pure Appl. Math.3, 201-230, (1950). Zbl0039.10403
  7. [7] Weinan E., Yu.G. Rykov, Ya.G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys.177, 349-380, (1996). Zbl0852.35097MR1384139

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.