Penalization of the Wiener measure and principal values

Catherine Donati-Martin; Yueyun Hu

Séminaire de probabilités de Strasbourg (2002)

  • Volume: 36, page 251-269

How to cite

top

Donati-Martin, Catherine, and Hu, Yueyun. "Penalization of the Wiener measure and principal values." Séminaire de probabilités de Strasbourg 36 (2002): 251-269. <http://eudml.org/doc/114091>.

@article{Donati2002,
author = {Donati-Martin, Catherine, Hu, Yueyun},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Brownian motion; Bessel process; Girsanov theorem; Krein correspondence; convergence in law of processes; diffusion},
language = {eng},
pages = {251-269},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Penalization of the Wiener measure and principal values},
url = {http://eudml.org/doc/114091},
volume = {36},
year = {2002},
}

TY - JOUR
AU - Donati-Martin, Catherine
AU - Hu, Yueyun
TI - Penalization of the Wiener measure and principal values
JO - Séminaire de probabilités de Strasbourg
PY - 2002
PB - Springer - Lecture Notes in Mathematics
VL - 36
SP - 251
EP - 269
LA - eng
KW - Brownian motion; Bessel process; Girsanov theorem; Krein correspondence; convergence in law of processes; diffusion
UR - http://eudml.org/doc/114091
ER -

References

top
  1. [1] Bertoin, J.: Applications de la théorie spectrale des cordes vibrantes aux fonctionnelles additives principales d'un brownien réfléchi. Ann. Inst. H. Poincaré Probab. Statist.25 (1989) 307-323. Zbl0694.60070MR1023954
  2. [2] Biane, Ph. and Yor, M.Valeurs principales associées aux temps locaux browniens. Bull. Sci. Math.111 (1987) 23-101. Zbl0619.60072MR886959
  3. [3] Durrett, R.T. and Rogers, L.C.G.: Asymptotic behavior of Brownian polymers. Prob. Th. Rel. Fields92 (1992) 337-349. Zbl0767.60080MR1165516
  4. [4] Dym, H. and McKean, H.P.: Gaussian Processes, Function Theory and the Inverse Spectral Problem. Academic Press, New York, London. 1976. Zbl0327.60029
  5. [5] van der Hofstad, R., den Hollander, F. and König, W.: Central limit theorem for the Edwards model. Ann. Probab.25 (1997) 573-597. Zbl0873.60009MR1434119
  6. [6] Imhof, J.P.: Density factorizations for Brownian motion and the three dimensional Bessel processes and applications. J. Appl. Probab.21 (1984) 500-510. Zbl0547.60081MR752015
  7. [7] Karatzas, I. and Shreve, S.E.: Brownian Motion and Stochastic Calculus (2nd edition) Springer, Berlin, 1991. Zbl0734.60060MR1121940
  8. [8] Kasahara, Y.: Spectral theory of generalized second order differential operators and its applications to Markov processes. Japan J. Math.1 (1975) 67-84. Zbl0348.60113MR405615
  9. [9] Kasahara, Y., Kotani, S. and Watanabe, H.: On the Green functions of 1-dimensional diffusion processes. Publ. Res. Inst. Math. Sci.16 (1980) no. 1, 175-188. Zbl0442.60077MR574032
  10. [10] Kotani, S. and Watanabe, S.: Krein's spectral theory of strings and generalized diffusion processes. In: "Functional Analysis in Markov Processes" (Ed. M. Fukushima) Lect. Note Math.923 (1982) pp. 235-259. SpringerBerlin. Zbl0496.60080MR661628
  11. [11] Krein, M.G.: On a generalization of an investigation of Stieltjes. Dokl. Akad. Nauk SSSR87 (1952) 881-884. Zbl0049.34702MR54078
  12. [12] Pitman, J. and Yor, M.: Bessel processes and infinitely divisible laws. In: Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980), pp. 285-370, Lecture Notes in Math., 851, Springer, Berlin, 1981. Zbl0469.60076MR620995
  13. [13] Revuz, D. and Yor, M.Continuous Martingales and Brownian Motion2nd edition, Springer, Berlin, 1994. Zbl0804.60001MR1303781
  14. [14] Rogers, L.C.G.and Williams, D.: Diffusions, Markov Processes and Martingales. Vol. II: Itô Calculus. Wiley, Chichester, 1987. Zbl0627.60001MR921238
  15. [15] Ruiz de Chavez, J.Le théorème de Paul Lévy pour des mesures signées. Sém. de Probabilités XVIII. Lecture Notes in Math.1059, 245-255, Springer, Berlin, 1984. Zbl0537.60039MR770965
  16. [16] Stroock, D.W. and Varadhan, S.R.S.: Multidimensional Diffusion ProcessesSpringer, Berlin, 1979. Zbl0426.60069MR532498
  17. [17] Watanabe, S.: Generalized arc-sine laws for one-dimensional diffusion processes and random walks. Proceedings of Symposia in Pure Mathematics (In: "Stochastic Analysis" (eds: M.C. Cranston and M.A. Pinsky)) 57157-172Providence, Rhode Island, 1995. Zbl0824.60080MR1335470
  18. [18] Watanabe, S.: Bilateral Bessel diffusion processes with drift and time inversion. (1999) Preprint 
  19. [19] Yor, M.: Some Aspects of Brownian Motion. Part II: Some Recent Martingale Problems. Birkhäuser Verlag, Berlin, 1997. Zbl0880.60082MR1442263
  20. [20] Yor, M. (editor): Exponential Functionals and Principal Values Related to Brownian Motion (A collection of research papers).Biblioteca de la Revista Matemática Iberoamericana, Madrid1997. Zbl0889.00015MR1648653
  21. [21] Zvonkin, A.K.: A transformation of the phase space of a process that removes the drift. Math. USSR Sbornik2 (1974) 129-149. Zbl0306.60049MR336813

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.