The models of a non-multidimensional -stable theory
Groupe d'étude de théories stables (1980-1982)
- Volume: 3, page 1-22
Access Full Article
topHow to cite
topPillay, Anand. "The models of a non-multidimensional $\omega $-stable theory." Groupe d'étude de théories stables 3 (1980-1982): 1-22. <http://eudml.org/doc/114182>.
@article{Pillay1980-1982,
author = {Pillay, Anand},
journal = {Groupe d'étude de théories stables},
keywords = {omega-stable theory; non-multidimensional theory; classification},
language = {eng},
pages = {1-22},
publisher = {Secrétariat mathématique},
title = {The models of a non-multidimensional $\omega $-stable theory},
url = {http://eudml.org/doc/114182},
volume = {3},
year = {1980-1982},
}
TY - JOUR
AU - Pillay, Anand
TI - The models of a non-multidimensional $\omega $-stable theory
JO - Groupe d'étude de théories stables
PY - 1980-1982
PB - Secrétariat mathématique
VL - 3
SP - 1
EP - 22
LA - eng
KW - omega-stable theory; non-multidimensional theory; classification
UR - http://eudml.org/doc/114182
ER -
References
top- [1] Bouscaren ( E.) and Lascar ( D.). - Countable models of non-multidimensional ω-stable theories (to appear). Zbl0517.03008
- [2] Lachlan ( A.H.). - Spectra of ω-stable theories, Z. für math. Logik, t. 24, 1978, p. 129-139. Zbl0401.03013MR495441
- [3] Lascar ( D.). - Ordre de Rudin-Keisler et poids dans les théories stables (to appear). Zbl0497.03020MR679127
- [4] Lascar ( D.). and Poizat ( B.). - An introduction to forking, J. of symb. Logib, t. 44, 1979, p. 330-350. Zbl0424.03013MR540665
- [5] Shelah ( S.). - Classification theory and the number of non-isomorphic models. - Amsterdam, New York, Oxford, North-Holland publishing Company, 1978 (Studies in Logic, 92). Zbl0388.03009MR513226
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.