Twisteurs et applications harmoniques en dimension 4
Séminaire de théorie spectrale et géométrie (1985-1986)
- Volume: 4, page 35-93
- ISSN: 1624-5458
Access Full Article
topHow to cite
topGauduchon, Paul. "Twisteurs et applications harmoniques en dimension 4." Séminaire de théorie spectrale et géométrie 4 (1985-1986): 35-93. <http://eudml.org/doc/114256>.
@article{Gauduchon1985-1986,
author = {Gauduchon, Paul},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {4-manifolds; semi-Riemannian manifolds; birational correspondences; superminimal mappings; conformal pseudo-immersions; twistor theory; harmonic maps},
language = {fre},
pages = {35-93},
publisher = {Institut Fourier},
title = {Twisteurs et applications harmoniques en dimension 4},
url = {http://eudml.org/doc/114256},
volume = {4},
year = {1985-1986},
}
TY - JOUR
AU - Gauduchon, Paul
TI - Twisteurs et applications harmoniques en dimension 4
JO - Séminaire de théorie spectrale et géométrie
PY - 1985-1986
PB - Institut Fourier
VL - 4
SP - 35
EP - 93
LA - fre
KW - 4-manifolds; semi-Riemannian manifolds; birational correspondences; superminimal mappings; conformal pseudo-immersions; twistor theory; harmonic maps
UR - http://eudml.org/doc/114256
ER -
References
top- [At] M.F. Atiyah. Geometry of Yang-Mills fields. Lezioni Fermiane. Pisa 1979. Zbl0435.58001MR554924
- [A-H-S] M.F. Atiyah. N.J. Hitchin et I.M. Singer. Self-duality in four-dimensional geometry. Proc. Royal Soc. London, Ser. A, 362 ( 1978), 425-461. Zbl0389.53011MR506229
- [Br] R. Bryant. Conformal and minimal Immersions of compact surfaces into the 4-sphere. J. Diff. Geom.17 ( 1982), 455-473. Zbl0498.53046MR679067
- [Ca] E. Calabi. Minimal immersions of surfaces in euclidean spheres. J. Diff. Geom. 1 ( 1967), 111-125. Zbl0171.20504MR233294
- [E-S]1 J. Eells et S. Salamon. Constructions twistorielles des applications harmoniques. C.R. Acad. Sc. Paris 296 ( 1983), 685-687. Zbl0531.58020MR705691
- [E-S]2 J. Eells et S. Salamon. Twistorial constructions of harmonie maps of surfaces into four-manifolds. (a paraître dans Ann. Sc. Norm. Sup. Pisa ). Zbl0627.58019
- [E-W] J. Eells et J.C. Wood. Harmonic maps from surfaces to complex projective spaces. Adv. in Math. 49 ( 1983), 217-263. Zbl0528.58007MR716372
- [F-K] Th. Friedrich et H. Kurke. Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature. (preprint Akademie der Wissenschaften der DDR ) Zbl0445.53029MR675762
- [Ga]1 P. Gauduchon. La correspondance de Bryant. (à paraître dans le Séminaire de Géométrie Différentielle de l'Ecole Polytechnique 83-84 , publié par J.F. Bourguignon et H. Blaine Lawson Jr.). Zbl0635.53040
- [Ga]2 P. Gauduchon. Pseudo-immersions superminimales d'une surface de Riemann dans une variété riemannienne de dimension 4. Bull. de la S.M.F. Fasc.4, t.114 ( 1986), à paraître. Zbl0623.53025MR882590
- [G-L] P. Gauduchon et H. Jr. Blaine Lawson. Topologically non-singular minimal cones. Ind. U. Math. J. Vol. 34, n°4 ( 1985), 915-927. Zbl0612.53007MR808834
- [Hi] N.J. Hitchin. Kahlerian twistor spaces. Proc. London Math. Soc. (3) 43 ( 1981), 133-150. Cf. aussi Zbl0474.14024MR623721
- A. Besse. Einstein manifolds.Ch.13. Ergebnisse der Math. 10 (Nouvelle Série). Springer-Verlag ( 1986). Zbl0613.53001MR2371700
- [La] H. Jr. Blaine Lawson. Surfaces minimales et la construction de Calabi-Penrose. Séminaire Bourbaki n°624 ( 1984). Zbl0734.53044MR768960
- [Sa] S. Salamon. Topics in four-dimensional Riemannian Geometry. Geometry Seminar Luigi Blanchi ( 1982). Lecture Notes Springer 1022. Zbl0532.53035MR728393
- [S-T] I.M. Singer et J.A. Thorpe. The curvature of 4-dimensional Einstein spaces. Dans Global Analysis In honor of K. Kodaira. Edited by D.C. Spencer and S. Yanaga. Princeton Math. Series n°29 ( 1969). Zbl0199.25401MR256303
- [Ve] J. L. Verdier. Two-dimensional σ-models and harmonic maps from S2 to S2 n. Lecture Notes in Physics. 180, 136-141, Springer ( 1982). Zbl0528.58008
- [We] S. Webster. Minimal surfaces in a Kähler surface. J. Diff. Geom. 20 ( 1984), 463-470. Zbl0561.53054MR788290
- [W1] R.O. Jr. Wells, Complex geometry in mathematical physics. Presses de l'Université de Montréal, 78 ( 1982). Zbl0481.58001MR654864
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.