Twisteurs et applications harmoniques en dimension 4

Paul Gauduchon

Séminaire de théorie spectrale et géométrie (1985-1986)

  • Volume: 4, page 35-93
  • ISSN: 1624-5458

How to cite

top

Gauduchon, Paul. "Twisteurs et applications harmoniques en dimension 4." Séminaire de théorie spectrale et géométrie 4 (1985-1986): 35-93. <http://eudml.org/doc/114256>.

@article{Gauduchon1985-1986,
author = {Gauduchon, Paul},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {4-manifolds; semi-Riemannian manifolds; birational correspondences; superminimal mappings; conformal pseudo-immersions; twistor theory; harmonic maps},
language = {fre},
pages = {35-93},
publisher = {Institut Fourier},
title = {Twisteurs et applications harmoniques en dimension 4},
url = {http://eudml.org/doc/114256},
volume = {4},
year = {1985-1986},
}

TY - JOUR
AU - Gauduchon, Paul
TI - Twisteurs et applications harmoniques en dimension 4
JO - Séminaire de théorie spectrale et géométrie
PY - 1985-1986
PB - Institut Fourier
VL - 4
SP - 35
EP - 93
LA - fre
KW - 4-manifolds; semi-Riemannian manifolds; birational correspondences; superminimal mappings; conformal pseudo-immersions; twistor theory; harmonic maps
UR - http://eudml.org/doc/114256
ER -

References

top
  1. [At] M.F. Atiyah. Geometry of Yang-Mills fields. Lezioni Fermiane. Pisa 1979. Zbl0435.58001MR554924
  2. [A-H-S] M.F. Atiyah. N.J. Hitchin et I.M. Singer. Self-duality in four-dimensional geometry. Proc. Royal Soc. London, Ser. A, 362 ( 1978), 425-461. Zbl0389.53011MR506229
  3. [Br] R. Bryant. Conformal and minimal Immersions of compact surfaces into the 4-sphere. J. Diff. Geom.17 ( 1982), 455-473. Zbl0498.53046MR679067
  4. [Ca] E. Calabi. Minimal immersions of surfaces in euclidean spheres. J. Diff. Geom. 1 ( 1967), 111-125. Zbl0171.20504MR233294
  5. [E-S]1 J. Eells et S. Salamon. Constructions twistorielles des applications harmoniques. C.R. Acad. Sc. Paris 296 ( 1983), 685-687. Zbl0531.58020MR705691
  6. [E-S]2 J. Eells et S. Salamon. Twistorial constructions of harmonie maps of surfaces into four-manifolds. (a paraître dans Ann. Sc. Norm. Sup. Pisa ). Zbl0627.58019
  7. [E-W] J. Eells et J.C. Wood. Harmonic maps from surfaces to complex projective spaces. Adv. in Math. 49 ( 1983), 217-263. Zbl0528.58007MR716372
  8. [F-K] Th. Friedrich et H. Kurke. Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature. (preprint Akademie der Wissenschaften der DDR ) Zbl0445.53029MR675762
  9. [Ga]1 P. Gauduchon. La correspondance de Bryant. (à paraître dans le Séminaire de Géométrie Différentielle de l'Ecole Polytechnique 83-84 , publié par J.F. Bourguignon et H. Blaine Lawson Jr.). Zbl0635.53040
  10. [Ga]2 P. Gauduchon. Pseudo-immersions superminimales d'une surface de Riemann dans une variété riemannienne de dimension 4. Bull. de la S.M.F. Fasc.4, t.114 ( 1986), à paraître. Zbl0623.53025MR882590
  11. [G-L] P. Gauduchon et H. Jr. Blaine Lawson. Topologically non-singular minimal cones. Ind. U. Math. J. Vol. 34, n°4 ( 1985), 915-927. Zbl0612.53007MR808834
  12. [Hi] N.J. Hitchin. Kahlerian twistor spaces. Proc. London Math. Soc. (3) 43 ( 1981), 133-150. Cf. aussi Zbl0474.14024MR623721
  13. A. Besse. Einstein manifolds.Ch.13. Ergebnisse der Math. 10 (Nouvelle Série). Springer-Verlag ( 1986). Zbl0613.53001MR2371700
  14. [La] H. Jr. Blaine Lawson. Surfaces minimales et la construction de Calabi-Penrose. Séminaire Bourbaki n°624 ( 1984). Zbl0734.53044MR768960
  15. [Sa] S. Salamon. Topics in four-dimensional Riemannian Geometry. Geometry Seminar Luigi Blanchi ( 1982). Lecture Notes Springer 1022. Zbl0532.53035MR728393
  16. [S-T] I.M. Singer et J.A. Thorpe. The curvature of 4-dimensional Einstein spaces. Dans Global Analysis In honor of K. Kodaira. Edited by D.C. Spencer and S. Yanaga. Princeton Math. Series n°29 ( 1969). Zbl0199.25401MR256303
  17. [Ve] J. L. Verdier. Two-dimensional σ-models and harmonic maps from S2 to S2 n. Lecture Notes in Physics. 180, 136-141, Springer ( 1982). Zbl0528.58008
  18. [We] S. Webster. Minimal surfaces in a Kähler surface. J. Diff. Geom. 20 ( 1984), 463-470. Zbl0561.53054MR788290
  19. [W1] R.O. Jr. Wells, Complex geometry in mathematical physics. Presses de l'Université de Montréal, 78 ( 1982). Zbl0481.58001MR654864

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.