Fonctions zêta de Selberg et surfaces de géométrie finie
Séminaire de théorie spectrale et géométrie (1989-1990)
- Volume: 8, page 89-94
- ISSN: 1624-5458
Access Full Article
topHow to cite
topGuillopé, Laurent. "Fonctions zêta de Selberg et surfaces de géométrie finie." Séminaire de théorie spectrale et géométrie 8 (1989-1990): 89-94. <http://eudml.org/doc/114304>.
@article{Guillopé1989-1990,
author = {Guillopé, Laurent},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Selberg zeta function; meromorphic extension; spectrum},
language = {fre},
pages = {89-94},
publisher = {Institut Fourier},
title = {Fonctions zêta de Selberg et surfaces de géométrie finie},
url = {http://eudml.org/doc/114304},
volume = {8},
year = {1989-1990},
}
TY - JOUR
AU - Guillopé, Laurent
TI - Fonctions zêta de Selberg et surfaces de géométrie finie
JO - Séminaire de théorie spectrale et géométrie
PY - 1989-1990
PB - Institut Fourier
VL - 8
SP - 89
EP - 94
LA - fre
KW - Selberg zeta function; meromorphic extension; spectrum
UR - http://eudml.org/doc/114304
ER -
References
top- [l] AGMON S. - On the spectral theory of the laplacian on non-compact hyperbolic manifolds, Séminaire d'équations aux dérivées partielles, Saint-Jean de Monts, 1986. Zbl0636.58037
- [2] BIRMAN M., KREIN M. - On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144 ( 1962), 475-478. Zbl0196.45004MR139007
- [3] EFFRAT I. - Determinants of laplacians on surfaces of finite volume, Commun. Math. Phys., 119 ( 1988), 443-451. Zbl0661.10038MR969211
- [4] EPSTEIN C. - Asymptotics for closed geodesics in a homology class, the finite volume case, Duke Math. J., 55 ( 1987), 717-757. Zbl0648.58041MR916117
- [5] FRIED D. - Zeta Functions of Ruelle and Selberg I, Ann. École Normale Sup., 19 ( 1986), 491-517. Zbl0609.58033MR875085
- [6] GUILLOPÉ L. - Fonctions zêta de Selberg et surfaces de géométrie finie, à paraître, 1990.
- [7] KATO T. - Perturbation theory for linear operators, Springer, 1966. Zbl0148.12601
- [8] KATSUDA A., SUNADA T. - Homology and closed geodesics in a compact riemann surface, Amer. J. Math., (),. Zbl0647.53036MR926741
- [9] KREIN M. - On the trace formule in the theory of perturbation, Mat. Sb, 33 ( 1953), 597-626. MR60742
- [10] LALLEY S. - Renewal theorems in symbolic dynamics, with applications to geodesie flows, noneuclidian tesselations and their fractal limits, Acta Math., 163 ( 1989), 1-55. Zbl0701.58021MR1007619
- [11] MAYER D. - Selberg's zeta function for PSL(2,Z) via the thermodynamic formalism for the continued fraction map, prépublication, 1990.
- [12] MAZZEO R., MELROSE R. - Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Func. Anal., 75 ( 1987), 260-310. Zbl0636.58034MR916753
- [13] PERRY P. - The laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix, J. Reine Angew. Math, 398 ( 1989), 67-91. Zbl0677.58044MR998472
- [14] PHILLIPS R., SARNAK P. - Geodesics in homology classes, Duke Math. J., 55 ( 1987), 287-297. Zbl0642.53050MR894581
- [15] POLLICOT M. - Analytic extensions of the zeta functions for surfaces of variable negative curvature, J. Differential Geo., 29 ( 1989), 699-706. Zbl0674.58033MR992336
- [16] SARNAK P. - Determinants of laplacians, Commun. Math. Phys., 110 ( 1987), 113-120. Zbl0618.10023MR885573
- [17] SELBERG A. - Harmonic analysis and discontinuous groups in weakly symmetrie riemannian spaces with applications to Dirichlet series, J. Ind. math. Soc, 20 ( 1956), 47-87. Zbl0072.08201MR88511
- [18] VENKOV A. - Spectral theory of automophic functions, Proc. Steldov Inst. Math, 153 ( 1981), 1-162. Zbl0483.10029MR665585
- [19] VOROS A. - Spectral functions, special functions and the Selberg zeta function, Commun. Math. Phys., 110 ( 1987), 439-465. Zbl0631.10025MR891947
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.