# Compactness of isospectral sets

Séminaire de théorie spectrale et géométrie (1991)

- Volume: S9, page 39-42
- ISSN: 1624-5458

## Access Full Article

top## How to cite

topBrooks, Robert. "Compactness of isospectral sets." Séminaire de théorie spectrale et géométrie S9 (1991): 39-42. <http://eudml.org/doc/114342>.

@article{Brooks1991,

author = {Brooks, Robert},

journal = {Séminaire de théorie spectrale et géométrie},

language = {eng},

pages = {39-42},

publisher = {Institut Fourier},

title = {Compactness of isospectral sets},

url = {http://eudml.org/doc/114342},

volume = {S9},

year = {1991},

}

TY - JOUR

AU - Brooks, Robert

TI - Compactness of isospectral sets

JO - Séminaire de théorie spectrale et géométrie

PY - 1991

PB - Institut Fourier

VL - S9

SP - 39

EP - 42

LA - eng

UR - http://eudml.org/doc/114342

ER -

## References

top- [B] R. Brooks, "Constructing Isospectral Manifolds," Amer. Math. Month. 95 ( 1988), pp. 823-839 Zbl0673.58046MR967343
- [BPP] R. Brooks, P. Perry, and P. Petersen, "Compactness and Finiteness Theorems for Isospectral Manifolds," preprint. Zbl0737.53038
- [Ch] J. Cheeger, "Finiteness Theorems for Riemannian Manifolds," Amer. J. Math. 92 ( 1970), pp. 61-74 Zbl0194.52902MR263092
- [Cg] S.Y. Cheng, "Eigenvalue Comparison Theorems and its Geometric Applications," Math. Zeit. 143( 1975) pp. 289-297 Zbl0329.53035MR378001
- [Gi] P. Gilkey, "Leading Terms in the Asymptotics of the Heat Equation," in R. Durrett and M. Pinsky, Geometry of Random Motion. Contemp. Math 73 ( 1988), pp.7 Zbl0661.58034MR954631
- [OPS] Osgood, R. Phillips, and P. Sarnak, "Compact Isospectral Sets of Surfaces," J. Funct. Anal. 80 ( 1988), pp. 212-234 Zbl0653.53021MR960229
- [Su] T. Sunada, "Riemannian Coverings and Isospectral Manifolds," Ann. Math. 121 ( 1985), pp. 169 - 186 Zbl0585.58047MR782558

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.