Analyse sur les variétés
Séminaire de théorie spectrale et géométrie (1991)
- Volume: S9, page 83-89
- ISSN: 1624-5458
Access Full Article
topHow to cite
topReferences
top- [1] BEAR H. - Part metric and hyperbolic metric, Am. Math. Month., 98 ( 1991), 109-123. Zbl0742.30039MR1089455
- [2] BERGER M. , GAUDUCHON P., MAZET E. - Le spectre d'une variété riemannienne, Springer Lectures Notes in Math. 194, 1971. Zbl0223.53034MR282313
- [3] BESSE A. - Manifolds all of whose geodesic are closed, Springer-Verlag, 1978. Zbl0387.53010MR496885
- [4] HAZEWINKEL M. - Encydopaedia of mathematics. Volume 5, Kluwer Academic Publishers, 1989. Zbl0691.00019
- [5] GILBARG D., TRUDINGER N.S. - Elliptic partial differential equations of second order. Springer-Verlag, 1977. Zbl0361.35003MR473443
- [6] HELGASON S. - Groups and geometric analysis, Academic Press, 1984. Zbl0543.58001MR754767
- [7] HÖRMANDER L. - The analysis of linear partial differential operators I, Springer-Verlag, 1990. Zbl0712.35001MR1065136
- [8] PROTTER M., WEINBERGER H. - Maximum principles in differential equations, Springer-Verlag, 1984. Zbl0549.35002MR762825
- [9] WARNER F. - Foundations of differentiable manifolds and Lie groups, Springer-Verlag, 1983. Zbl0516.58001MR722297