Closed orbits of Anosov flows in homology classes

Atsushi Katsuda

Séminaire de théorie spectrale et géométrie (1991)

  • Volume: S9, page 99-102
  • ISSN: 1624-5458

How to cite

top

Katsuda, Atsushi. "Closed orbits of Anosov flows in homology classes." Séminaire de théorie spectrale et géométrie S9 (1991): 99-102. <http://eudml.org/doc/114352>.

@article{Katsuda1991,
author = {Katsuda, Atsushi},
journal = {Séminaire de théorie spectrale et géométrie},
language = {eng},
pages = {99-102},
publisher = {Institut Fourier},
title = {Closed orbits of Anosov flows in homology classes},
url = {http://eudml.org/doc/114352},
volume = {S9},
year = {1991},
}

TY - JOUR
AU - Katsuda, Atsushi
TI - Closed orbits of Anosov flows in homology classes
JO - Séminaire de théorie spectrale et géométrie
PY - 1991
PB - Institut Fourier
VL - S9
SP - 99
EP - 102
LA - eng
UR - http://eudml.org/doc/114352
ER -

References

top
  1. [1] KATSUDA A., SUNADA T. - Closed orbits in homology classes, Publ. I.H.E.S., 71 ( 1990), 5-32. Zbl0728.58026MR1079641
  2. [2] KATSUDA A., SUNADA T. - Homology and closed geodesics in a compact Riemann surface, Amer. J. Math., 110 ( 1988), 145-156. Zbl0647.53036MR926741
  3. [3] KATSUDA A. - Density theorem for closed orbits. Lecture note in Math., 1339 (*), 182-202. Zbl0668.58043MR961481
  4. [4] PARRY W. , POLLICOTT M. - Zeta functions and the periodic orbil structure of hyperbolic dynamics, Asterisque, 187-188 ( 1990), 1-268. Zbl0726.58003MR1085356
  5. [5] SUNADA T. - To appear (??), (book). 
  6. [6] GUILLOPÉ L. - Fonctions zêta de Selberg et surfaces de géométrie finie, Prépublication de l'Institut Fourier n° 165, Grenoble , 1991. MR1717287
  7. [7] LAGARIAS J.L., ODLYSKO A.M. - Effective versions of Chebotarev density theorem, algebraic number field, L-function and Galois properties. Ed. by A. Fröhlich Acad. Press London, ( 1977), 409-464. Zbl0362.12011MR447191
  8. [8] BALLMAN W., BRINAND M., SPATZIER R. - Structure of manifolds of nonpositive curvature II, Ann. of Math., 122 ( 1985), 205-235. Zbl0598.53046MR808219
  9. [9] MORITA T. - The symbolic representation of billiard without boundary condition, Preprint of Tokyo Institut of Technology. Zbl0731.58055MR1013334
  10. [10] BUNIMOVICH L.A., SINAI Y.G. , CHERNOV N.L. - Markov partitions for two-dimensional hyperbolic billiards, Russian Math. Survey, 45 ( 1990), 105-152. Zbl0721.58036MR1071936
  11. [11] VEECH W.A. - The Teichmüller geodesic flow, Ann. of Math., 124 ( 1986), 441-530. (For further references, see references in [1], [3], [4], [10],...) Zbl0658.32016MR866707

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.