Closed orbits of Anosov flows in homology classes
Séminaire de théorie spectrale et géométrie (1991)
- Volume: S9, page 99-102
- ISSN: 1624-5458
Access Full Article
topHow to cite
topKatsuda, Atsushi. "Closed orbits of Anosov flows in homology classes." Séminaire de théorie spectrale et géométrie S9 (1991): 99-102. <http://eudml.org/doc/114352>.
@article{Katsuda1991,
author = {Katsuda, Atsushi},
journal = {Séminaire de théorie spectrale et géométrie},
language = {eng},
pages = {99-102},
publisher = {Institut Fourier},
title = {Closed orbits of Anosov flows in homology classes},
url = {http://eudml.org/doc/114352},
volume = {S9},
year = {1991},
}
TY - JOUR
AU - Katsuda, Atsushi
TI - Closed orbits of Anosov flows in homology classes
JO - Séminaire de théorie spectrale et géométrie
PY - 1991
PB - Institut Fourier
VL - S9
SP - 99
EP - 102
LA - eng
UR - http://eudml.org/doc/114352
ER -
References
top- [1] KATSUDA A., SUNADA T. - Closed orbits in homology classes, Publ. I.H.E.S., 71 ( 1990), 5-32. Zbl0728.58026MR1079641
- [2] KATSUDA A., SUNADA T. - Homology and closed geodesics in a compact Riemann surface, Amer. J. Math., 110 ( 1988), 145-156. Zbl0647.53036MR926741
- [3] KATSUDA A. - Density theorem for closed orbits. Lecture note in Math., 1339 (*), 182-202. Zbl0668.58043MR961481
- [4] PARRY W. , POLLICOTT M. - Zeta functions and the periodic orbil structure of hyperbolic dynamics, Asterisque, 187-188 ( 1990), 1-268. Zbl0726.58003MR1085356
- [5] SUNADA T. - To appear (??), (book).
- [6] GUILLOPÉ L. - Fonctions zêta de Selberg et surfaces de géométrie finie, Prépublication de l'Institut Fourier n° 165, Grenoble , 1991. MR1717287
- [7] LAGARIAS J.L., ODLYSKO A.M. - Effective versions of Chebotarev density theorem, algebraic number field, L-function and Galois properties. Ed. by A. Fröhlich Acad. Press London, ( 1977), 409-464. Zbl0362.12011MR447191
- [8] BALLMAN W., BRINAND M., SPATZIER R. - Structure of manifolds of nonpositive curvature II, Ann. of Math., 122 ( 1985), 205-235. Zbl0598.53046MR808219
- [9] MORITA T. - The symbolic representation of billiard without boundary condition, Preprint of Tokyo Institut of Technology. Zbl0731.58055MR1013334
- [10] BUNIMOVICH L.A., SINAI Y.G. , CHERNOV N.L. - Markov partitions for two-dimensional hyperbolic billiards, Russian Math. Survey, 45 ( 1990), 105-152. Zbl0721.58036MR1071936
- [11] VEECH W.A. - The Teichmüller geodesic flow, Ann. of Math., 124 ( 1986), 441-530. (For further references, see references in [1], [3], [4], [10],...) Zbl0658.32016MR866707
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.