Asymptotic flag of an orientable measured foliation
Séminaire de théorie spectrale et géométrie (1992-1993)
- Volume: 11, page 113-131
- ISSN: 1624-5458
Access Full Article
topHow to cite
topZorich, Anton. "Asymptotic flag of an orientable measured foliation." Séminaire de théorie spectrale et géométrie 11 (1992-1993): 113-131. <http://eudml.org/doc/114354>.
@article{Zorich1992-1993,
author = {Zorich, Anton},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {orientable measured foliation; flag of subspaces},
language = {eng},
pages = {113-131},
publisher = {Institut Fourier},
title = {Asymptotic flag of an orientable measured foliation},
url = {http://eudml.org/doc/114354},
volume = {11},
year = {1992-1993},
}
TY - JOUR
AU - Zorich, Anton
TI - Asymptotic flag of an orientable measured foliation
JO - Séminaire de théorie spectrale et géométrie
PY - 1992-1993
PB - Institut Fourier
VL - 11
SP - 113
EP - 131
LA - eng
KW - orientable measured foliation; flag of subspaces
UR - http://eudml.org/doc/114354
ER -
References
top- [Anos] D.V. Anosov, How curves on the universal covering plane that cover nonselfinierseding curves on a closed surface can go to infinity, Proc. of the Steklov Inst. of Math., 191:2 ( 1989), 35-46. Zbl0925.57014MR1029036
- [Arn92] V.I. Arnold, Problems on singularities and dynamical Systems, Progress in Soviet Math., Chapman and Hall, 1992. Zbl0883.58016
- [CFS] I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory, Springer-Verlag, 1982. Zbl0493.28007MR832433
- [Dinn1] I.A. Dinnikov, Proof of Novikov's conjecture on semiclassical motion of an electron. Zbl0808.58014
- [Dinn2] I.A. Dinnikov, to appear.
- [FLP] A. Fathi, F. Laudenbach, V. Poénaru. Travaux de Thurston sur les surfaces, Astérisque 66 -67 ( 1979). Zbl0446.57010MR568308
- [Fried] D. Fried, Anosov foliations and cohomology, Ergod. Th & Dynam. Sys. 6 ( 1986), 9-16; 8 ( 1988), 491-492. Zbl0602.57017MR837973
- [Katok] A.B. Katok, Invariant measures of flows on oriented surfaces, Soviet Math. Dokl. 14 ( 1973), 1104-1108. Zbl0298.28013
- [Keane] M. KeaneInterval exchange transformations, Math. Z. 141 ( 1975), 21-31. Zbl0278.28010MR357739
- [Kerck] S.P. Kerckhoff, Simplicial Systems for interval exchange maps and measured foliations, Ergod. Th. &: Dynam. Sys. 5 ( 1985), 257-271 Zbl0597.58024MR796753
- [KN] H.B. Keynes, D. Newton, A "minimal", non-uniquely ergodic interval exchange transformation. Math. Z., 148 ( 1976), 101-105. Zbl0308.28014MR409766
- [Lev1] G. Levitt, Flots topologiquement transitifs sur les surfaces compactes sans bord: contrexemples à une conjecture de Katok. Ergod. Th. & Dynam. Sys., 3 ( 1983), 241-249. Zbl0525.58031MR742226
- [Lev2] G. Levitt, Feuilletages des surfaces. These de Doctorat D'Etat, Université Paris VII, 1983. MR662443
- [Masur] H. Masur, Interval exchange transformations and measured foliations, Ann. of Math., 115:1 ( 1982). 169-200. Zbl0497.28012MR644018
- [N-R] A. Nogueira, D. Rudolph, Topological weakly mixing of interval exchange maps Zbl0958.37010
- [Nov82] S.P. Novikov, The Hamiltonian formalism and a many-valued analogue of Morse theory, Russian Math. Surveys, 37:5, ( 1982), 1-56. Zbl0571.58011MR676612
- [Nov91] S.P. Novikov, Quasiperiodic structures in topology. Proc. of the Conference on Topological Methods in Math. , dedicated to 60-th anniv. of J.Milnor, Stony Brook, 1991. Zbl0813.57029
- [Rauzy] G. Rauzy, Echanges d'intervalles et transformations induites. Acta Arith. 34 ( 1979), 315-328. Zbl0414.28018MR543205
- [R-S] D. Ruelle, D. Sullivan, Currents, flows and diffeomorphisms. Topology 14 ( 1975), 319-328. Zbl0321.58019MR415679
- [Schw] S. Schwartzman, Asymptotic cycles, Annals of Mathematics 66 ( 1957), 270-284 Zbl0207.22603MR88720
- [SK] Ya.G. Sinai. K.M. Khanin. Mixing of some classes of special flows over rotation of a circle, Functional Anal. Appl., 26:3 ( 1992). Zbl0797.58045MR1189019
- [Veech] W.A. Veech, Gauss measures for transformations on the space of interval exchange maps. Annals of Mathematics 115 ( 1982), 201-242 Zbl0486.28014MR644019
- [W] S. Wolfram. Mathematica: a system for doing mathematics by computer, Wolfram Research, Inc.; Addison-Wesley Pub. Co., second edition, 1991. Zbl0671.65002
- [Zorich] A. Zorich, The S.P. Novikov Problem on Semiclassical motion of electron in homogeneous Magnetic Field, Russian Math. Surveys, 39:5 ( 1984). 287-288. Zbl0900.58031MR764016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.