Generic result for the existence of a free semi-group

Pierre-Alain Cherix

Séminaire de théorie spectrale et géométrie (1994-1995)

  • Volume: 13, page 123-133
  • ISSN: 1624-5458

How to cite

top

Cherix, Pierre-Alain. "Generic result for the existence of a free semi-group." Séminaire de théorie spectrale et géométrie 13 (1994-1995): 123-133. <http://eudml.org/doc/114371>.

@article{Cherix1994-1995,
author = {Cherix, Pierre-Alain},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {finitely presented groups; generically free semigroups; spectral radius; transition operators; simple random walks; directed Cayley graphs},
language = {eng},
pages = {123-133},
publisher = {Institut Fourier},
title = {Generic result for the existence of a free semi-group},
url = {http://eudml.org/doc/114371},
volume = {13},
year = {1994-1995},
}

TY - JOUR
AU - Cherix, Pierre-Alain
TI - Generic result for the existence of a free semi-group
JO - Séminaire de théorie spectrale et géométrie
PY - 1994-1995
PB - Institut Fourier
VL - 13
SP - 123
EP - 133
LA - eng
KW - finitely presented groups; generically free semigroups; spectral radius; transition operators; simple random walks; directed Cayley graphs
UR - http://eudml.org/doc/114371
ER -

References

top
  1. [1] C. CHAMPETIER. Cocroissance des groupes à petite simplification. Bull London Math. Soc., 25: 438-444, 1993. Zbl0829.20046MR1233406
  2. [2] C. CHAMPETIER. Propriétés statistiques des groupes de présentation finie. to appear in Adv. in Maths. Zbl0847.20030MR1363765
  3. [3] C. CHAMPETIER. Introduction à la petite simplification. 
  4. [4] P.-A. CHERIX and A. VALETTE. On spectra of simple random walks on one-relator groups (with an appendix of p. jolissaint). to appear in Pacific }. of math. Zbl0865.60059MR1432838
  5. [5] E. GHYS and P. de la HARPE eds. Sur les groupes hyperboliques d'après M. Gromov. Number 83 in Progress in Maths. Birkhaüser, 1990. Zbl0731.20025MR1086648
  6. [6] M. GROMOVHyperbolic groups. "Essays in Group Theory", ed. S.M. Gersten, M.S.R.I. Publ, 8:75-263, 1987. Zbl0634.20015MR919829
  7. [7] P. de la HARPE, A.G. ROBERTSON, and A. VALETTE. On the spectrum of the sum of generators for a finitely generated group. Israël J.of Maths., 81:65-96, 1993. Zbl0791.43008MR1231179
  8. [8] P. de la HARPE, A.G. ROBERTSON, and A. VALETTE. On the spectrum of the sum of generators for a finitely generated group ii. Colloquium Math., 65:87-102, 1993. Zbl0846.46036MR1224787
  9. [9] R.C. LYNDON and P.E. SCHUPPCombinatorial group theory. Number 89 in Ergebnisse der Math. Springer, 1977. Zbl0368.20023MR577064
  10. [10] A. OL'SHANSKII. Alomost every group is hyperbolic. International j . of Algebra and Computation, 2:1-17, 1992. Zbl0779.20016MR1167524

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.