Generic result for the existence of a free semi-group
Séminaire de théorie spectrale et géométrie (1994-1995)
- Volume: 13, page 123-133
- ISSN: 1624-5458
Access Full Article
topHow to cite
topCherix, Pierre-Alain. "Generic result for the existence of a free semi-group." Séminaire de théorie spectrale et géométrie 13 (1994-1995): 123-133. <http://eudml.org/doc/114371>.
@article{Cherix1994-1995,
author = {Cherix, Pierre-Alain},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {finitely presented groups; generically free semigroups; spectral radius; transition operators; simple random walks; directed Cayley graphs},
language = {eng},
pages = {123-133},
publisher = {Institut Fourier},
title = {Generic result for the existence of a free semi-group},
url = {http://eudml.org/doc/114371},
volume = {13},
year = {1994-1995},
}
TY - JOUR
AU - Cherix, Pierre-Alain
TI - Generic result for the existence of a free semi-group
JO - Séminaire de théorie spectrale et géométrie
PY - 1994-1995
PB - Institut Fourier
VL - 13
SP - 123
EP - 133
LA - eng
KW - finitely presented groups; generically free semigroups; spectral radius; transition operators; simple random walks; directed Cayley graphs
UR - http://eudml.org/doc/114371
ER -
References
top- [1] C. CHAMPETIER. Cocroissance des groupes à petite simplification. Bull London Math. Soc., 25: 438-444, 1993. Zbl0829.20046MR1233406
- [2] C. CHAMPETIER. Propriétés statistiques des groupes de présentation finie. to appear in Adv. in Maths. Zbl0847.20030MR1363765
- [3] C. CHAMPETIER. Introduction à la petite simplification.
- [4] P.-A. CHERIX and A. VALETTE. On spectra of simple random walks on one-relator groups (with an appendix of p. jolissaint). to appear in Pacific }. of math. Zbl0865.60059MR1432838
- [5] E. GHYS and P. de la HARPE eds. Sur les groupes hyperboliques d'après M. Gromov. Number 83 in Progress in Maths. Birkhaüser, 1990. Zbl0731.20025MR1086648
- [6] M. GROMOVHyperbolic groups. "Essays in Group Theory", ed. S.M. Gersten, M.S.R.I. Publ, 8:75-263, 1987. Zbl0634.20015MR919829
- [7] P. de la HARPE, A.G. ROBERTSON, and A. VALETTE. On the spectrum of the sum of generators for a finitely generated group. Israël J.of Maths., 81:65-96, 1993. Zbl0791.43008MR1231179
- [8] P. de la HARPE, A.G. ROBERTSON, and A. VALETTE. On the spectrum of the sum of generators for a finitely generated group ii. Colloquium Math., 65:87-102, 1993. Zbl0846.46036MR1224787
- [9] R.C. LYNDON and P.E. SCHUPPCombinatorial group theory. Number 89 in Ergebnisse der Math. Springer, 1977. Zbl0368.20023MR577064
- [10] A. OL'SHANSKII. Alomost every group is hyperbolic. International j . of Algebra and Computation, 2:1-17, 1992. Zbl0779.20016MR1167524
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.