On some Optimal (n,t,1,2) and (n,t,1,3) Super Imposed Codes

Manev, Mladen

Serdica Journal of Computing (2009)

  • Volume: 3, Issue: 1, page 15-22
  • ISSN: 1312-6555

Abstract

top
Partially supported by the Technical University of Gabrovo under Grant C-801/2008One of the main problems in the theory of superimposed codes is to find the minimum length N for which an (N, T,w, r) superimposed code exists for given values of T , w and r. Let N(T,w, r) be the minimum length N for which an (N, T,w, r) superimposed code exists. The (N, T,w, r) superimposed code is called optimal when N = N(T,w, r). The values of N(T, 1, 2) are known for T ≤ 12 and the values of N(T, 1, 3) are known for T ≤ 20. In this work the values of N(T, 1, 2) for 13 ≤ T ≤ 20 and the value of N(21, 1, 3) are obtained. The optimal superimposed codes with parameters (9, 10, 1, 2), (10, 13, 1, 2), (11, 14, 1, 2), (11, 15, 1, 2), (11, 16, 1, 2) and (11, 17, 1, 2) are classified up to equivalence. The optimal (N, T, 1, 3) superimposed codes for T ≤ 20 are classified up to equivalence.

How to cite

top

Manev, Mladen. "On some Optimal (n,t,1,2) and (n,t,1,3) Super Imposed Codes." Serdica Journal of Computing 3.1 (2009): 15-22. <http://eudml.org/doc/11440>.

@article{Manev2009,
abstract = {Partially supported by the Technical University of Gabrovo under Grant C-801/2008One of the main problems in the theory of superimposed codes is to find the minimum length N for which an (N, T,w, r) superimposed code exists for given values of T , w and r. Let N(T,w, r) be the minimum length N for which an (N, T,w, r) superimposed code exists. The (N, T,w, r) superimposed code is called optimal when N = N(T,w, r). The values of N(T, 1, 2) are known for T ≤ 12 and the values of N(T, 1, 3) are known for T ≤ 20. In this work the values of N(T, 1, 2) for 13 ≤ T ≤ 20 and the value of N(21, 1, 3) are obtained. The optimal superimposed codes with parameters (9, 10, 1, 2), (10, 13, 1, 2), (11, 14, 1, 2), (11, 15, 1, 2), (11, 16, 1, 2) and (11, 17, 1, 2) are classified up to equivalence. The optimal (N, T, 1, 3) superimposed codes for T ≤ 20 are classified up to equivalence.},
author = {Manev, Mladen},
journal = {Serdica Journal of Computing},
keywords = {Superimposed Codes; Classification},
language = {eng},
number = {1},
pages = {15-22},
publisher = {Institute of Mathematics and Informatics Bulgarian Academy of Sciences},
title = {On some Optimal (n,t,1,2) and (n,t,1,3) Super Imposed Codes},
url = {http://eudml.org/doc/11440},
volume = {3},
year = {2009},
}

TY - JOUR
AU - Manev, Mladen
TI - On some Optimal (n,t,1,2) and (n,t,1,3) Super Imposed Codes
JO - Serdica Journal of Computing
PY - 2009
PB - Institute of Mathematics and Informatics Bulgarian Academy of Sciences
VL - 3
IS - 1
SP - 15
EP - 22
AB - Partially supported by the Technical University of Gabrovo under Grant C-801/2008One of the main problems in the theory of superimposed codes is to find the minimum length N for which an (N, T,w, r) superimposed code exists for given values of T , w and r. Let N(T,w, r) be the minimum length N for which an (N, T,w, r) superimposed code exists. The (N, T,w, r) superimposed code is called optimal when N = N(T,w, r). The values of N(T, 1, 2) are known for T ≤ 12 and the values of N(T, 1, 3) are known for T ≤ 20. In this work the values of N(T, 1, 2) for 13 ≤ T ≤ 20 and the value of N(21, 1, 3) are obtained. The optimal superimposed codes with parameters (9, 10, 1, 2), (10, 13, 1, 2), (11, 14, 1, 2), (11, 15, 1, 2), (11, 16, 1, 2) and (11, 17, 1, 2) are classified up to equivalence. The optimal (N, T, 1, 3) superimposed codes for T ≤ 20 are classified up to equivalence.
LA - eng
KW - Superimposed Codes; Classification
UR - http://eudml.org/doc/11440
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.