The Dirac operator on collapsing S 1 -bundles

Bernd Ammann

Séminaire de théorie spectrale et géométrie (1997-1998)

  • Volume: 16, page 33-42
  • ISSN: 1624-5458

How to cite

top

Ammann, Bernd. "The Dirac operator on collapsing $S^1$-bundles." Séminaire de théorie spectrale et géométrie 16 (1997-1998): 33-42. <http://eudml.org/doc/114423>.

@article{Ammann1997-1998,
author = {Ammann, Bernd},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {spin Dirac operator; spectrum; collapsing circle bundle},
language = {eng},
pages = {33-42},
publisher = {Institut Fourier},
title = {The Dirac operator on collapsing $S^1$-bundles},
url = {http://eudml.org/doc/114423},
volume = {16},
year = {1997-1998},
}

TY - JOUR
AU - Ammann, Bernd
TI - The Dirac operator on collapsing $S^1$-bundles
JO - Séminaire de théorie spectrale et géométrie
PY - 1997-1998
PB - Institut Fourier
VL - 16
SP - 33
EP - 42
LA - eng
KW - spin Dirac operator; spectrum; collapsing circle bundle
UR - http://eudml.org/doc/114423
ER -

References

top
  1. [1] I. AGRICOLA, B. AMMANN, T. FRIEDRICH, A comparison of the eigenvalues of the Dirac and Laplace operator on the two-dimensional torus. Preprint 1998. Zbl0944.58022
  2. [2] B. AMMANN, Spin-Strukturen und das Spektrum des Dirac-Operators, Dissertation, Universität Freiburg, ISBN 3-8265-4282-7, Shaker Verlag Aachen 1998. 
  3. [3] B. AMMANN, C. BÄR, The Dirac Operator on Nilmanifolds and Collapsing Circle Bundles, Ann. Global Anal. Geom. 16, 221-253 ( 1998). Zbl0911.58037MR1626659
  4. [4] C. BÄR, Metrics with harmonic spinors, GAFA 6, 899-942 ( 1996). Zbl0867.53037MR1421872
  5. [5] L. BÉRARD BERGERY, J.-P. BOURGUIGNON, Riemannian submersions with totally geodesic fibers, Illinois J. Math. 26, 151-200 ( 1982). Zbl0483.58021MR650387
  6. [6] B. COLBOIS, G. COURTOIS, Convergence de variétés et convergence du spectre du Laplacien, Ann. Sc. Ec. Norm. Sup. 4e série 24, 507-518 ( 1991). Zbl0754.58040MR1123559
  7. [7] B. COLBOIS, J. DODZIUK, Riemannian metrics with large λ1, Proc. Amer. Math. Soc. 122 no. 3, 905-906 ( 1994). Zbl0820.58056MR1213857
  8. [8] T. FRIEDRICH, Zur Abhängigkeit des Dirac-Operators von der Spin-Strukturt, Colloq. Math. 48, 57-62 ( 1984). Zbl0542.53026MR750754
  9. [9] K. FUKAYA, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math. 87, 517-547 ( 1987). Zbl0589.58034MR874035
  10. [10] P.B. GILKEY, J.H. PARK, Eigenvalues of the Laplacian and Riemannian submersions,Yokohama Math. J. 43 no. 1, 7-11 ( 1995). Zbl0853.58107MR1363013
  11. [11] P.B. GILKEY, J.H. PARK, Riemannian submersions which preserve the eigenforms of the Laplacian, III. J. Math. 40, 194-201 ( 1996). Zbl0855.58059MR1398089
  12. [12] P.B. GILKEY, J.V. LEAHY, J.H. PARK, Eigenvalues of the form valued Laplacian for Riemannian submersions, Proc. Amer. Math. Soc. 126 no. 6,1845-1850 ( 1998). Zbl0903.58061MR1485476
  13. [13] N. HITCHIN, Harmonic spinors, Adv. Math. 14, 1-55 ( 1974). Zbl0284.58016MR358873
  14. [14] J.-Y. WU, The topological spectrum of a smooth closed manifold, Ind. Univ. Math. J.44, no. 2, 511-534 ( 1995). Zbl0843.58124MR1355410

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.