Fonctions harmoniques sur les variétés

Erwann Aubry

Séminaire de théorie spectrale et géométrie (1998-1999)

  • Volume: 17, page 47-68
  • ISSN: 1624-5458

How to cite

top

Aubry, Erwann. "Fonctions harmoniques sur les variétés." Séminaire de théorie spectrale et géométrie 17 (1998-1999): 47-68. <http://eudml.org/doc/114435>.

@article{Aubry1998-1999,
author = {Aubry, Erwann},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {harmonic functions; Laplacian; volume of geodesic balls},
language = {fre},
pages = {47-68},
publisher = {Institut Fourier},
title = {Fonctions harmoniques sur les variétés},
url = {http://eudml.org/doc/114435},
volume = {17},
year = {1998-1999},
}

TY - JOUR
AU - Aubry, Erwann
TI - Fonctions harmoniques sur les variétés
JO - Séminaire de théorie spectrale et géométrie
PY - 1998-1999
PB - Institut Fourier
VL - 17
SP - 47
EP - 68
LA - fre
KW - harmonic functions; Laplacian; volume of geodesic balls
UR - http://eudml.org/doc/114435
ER -

References

top
  1. [1] J. CHEEGER, T. COLDING, W. MINICOZZI, Linear growth harmonie fonctions on complete manifolds of non-negative Ricci curvature, Geom. Func. Anal. 5 ( 1995), 948-954. Zbl0871.53032MR1361516
  2. [2] J. CHEEGER, D. GROMOLL, The splitting theorem for manifolds of non-negative Ricci curvature, J. Diff. Geom. 6 ( 1971), 119-128. Zbl0223.53033MR303460
  3. [3] J. CHEEGER, D. GROMOLL, On the structure of complete manifolds of non-negative curvature, Ann. Math. 92 ( 1972), 413-443. Zbl0246.53049MR309010
  4. [4] S.Y. CHENG, Liouville theorem for harmonic maps, Geometry of the Laplace operator, Proc. Symp. Pure Math., vol. 36, AMS ( 1980), 147-151. Zbl0455.58009MR573431
  5. [5] S.Y. CHENG, S.T. YAU, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 ( 1975), 333-354. Zbl0312.53031MR385749
  6. [6] T. COLDING, W. MINICOZZI, Harmonic functions with polynomialgrowth, J. Diff. Geom. 46, n. 1 ( 1997). Zbl0914.53027MR1472893
  7. [7] T. COLDING, W. MINICOZZI, Harmonic functions on manifolds, preprint. Zbl0928.53030MR1491451
  8. [8] T. COLDING, W. MINICOZZI, Weyl type bounds for harmonic functions, Invent. Math. 131 ( 1998), 257-298. Zbl0919.31004MR1608571
  9. [9] T. COLDING, W. MINICOZZILiouville theorems for harmonic sections and applications on manifoldst, preprint. MR1488297
  10. [10] S. GALLOT, D. HULIN, J. LAFONTAINE, Riemannian Geometry, Universitext, Springer-Verlag, 1993. Zbl0636.53001
  11. [11] E. HEBEYIntroduction à l'analyse non linéaire sur les variétés, Fondation, Diderot éditeur, 1997. Zbl0918.58001
  12. [12] P. LI, polynomial growth harmonic sections, Math. Research Letters 4 ( 1997), 35-41. MR1432808
  13. [13] P. LI, Curvature and function theory on riemannian manifolds, preprint. Zbl1066.53084MR1919432
  14. [14] P. LI, L.F. TAM, Positive harmonic functions on complete manifolds with non-negative Ricci curvature outside a compact set, Ann. Math. 125 ( 1987), 171-207. Zbl0622.58001MR873381
  15. [15] P. LI, L.F. TAM, Linear growth harmonic functions on a complete manifold, J. Diff. Geom. 29 ( 1989), 421-425. Zbl0668.53023MR982183
  16. [16] P. LI, L.F. TAM, Complete surface with finite total curvature, J. Diff. Geom. 33 ( 1991), 139-168. Zbl0749.53025MR1085138
  17. [17] M. SCHOEN, S-T. YAU, Conference Proc. and Lectures Notes in Geometry and topology Vol.I et II, International Press. Zbl0886.53004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.