Fonctions harmoniques sur les variétés
Séminaire de théorie spectrale et géométrie (1998-1999)
- Volume: 17, page 47-68
- ISSN: 1624-5458
Access Full Article
topHow to cite
topAubry, Erwann. "Fonctions harmoniques sur les variétés." Séminaire de théorie spectrale et géométrie 17 (1998-1999): 47-68. <http://eudml.org/doc/114435>.
@article{Aubry1998-1999,
author = {Aubry, Erwann},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {harmonic functions; Laplacian; volume of geodesic balls},
language = {fre},
pages = {47-68},
publisher = {Institut Fourier},
title = {Fonctions harmoniques sur les variétés},
url = {http://eudml.org/doc/114435},
volume = {17},
year = {1998-1999},
}
TY - JOUR
AU - Aubry, Erwann
TI - Fonctions harmoniques sur les variétés
JO - Séminaire de théorie spectrale et géométrie
PY - 1998-1999
PB - Institut Fourier
VL - 17
SP - 47
EP - 68
LA - fre
KW - harmonic functions; Laplacian; volume of geodesic balls
UR - http://eudml.org/doc/114435
ER -
References
top- [1] J. CHEEGER, T. COLDING, W. MINICOZZI, Linear growth harmonie fonctions on complete manifolds of non-negative Ricci curvature, Geom. Func. Anal. 5 ( 1995), 948-954. Zbl0871.53032MR1361516
- [2] J. CHEEGER, D. GROMOLL, The splitting theorem for manifolds of non-negative Ricci curvature, J. Diff. Geom. 6 ( 1971), 119-128. Zbl0223.53033MR303460
- [3] J. CHEEGER, D. GROMOLL, On the structure of complete manifolds of non-negative curvature, Ann. Math. 92 ( 1972), 413-443. Zbl0246.53049MR309010
- [4] S.Y. CHENG, Liouville theorem for harmonic maps, Geometry of the Laplace operator, Proc. Symp. Pure Math., vol. 36, AMS ( 1980), 147-151. Zbl0455.58009MR573431
- [5] S.Y. CHENG, S.T. YAU, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 ( 1975), 333-354. Zbl0312.53031MR385749
- [6] T. COLDING, W. MINICOZZI, Harmonic functions with polynomialgrowth, J. Diff. Geom. 46, n. 1 ( 1997). Zbl0914.53027MR1472893
- [7] T. COLDING, W. MINICOZZI, Harmonic functions on manifolds, preprint. Zbl0928.53030MR1491451
- [8] T. COLDING, W. MINICOZZI, Weyl type bounds for harmonic functions, Invent. Math. 131 ( 1998), 257-298. Zbl0919.31004MR1608571
- [9] T. COLDING, W. MINICOZZILiouville theorems for harmonic sections and applications on manifoldst, preprint. MR1488297
- [10] S. GALLOT, D. HULIN, J. LAFONTAINE, Riemannian Geometry, Universitext, Springer-Verlag, 1993. Zbl0636.53001
- [11] E. HEBEYIntroduction à l'analyse non linéaire sur les variétés, Fondation, Diderot éditeur, 1997. Zbl0918.58001
- [12] P. LI, polynomial growth harmonic sections, Math. Research Letters 4 ( 1997), 35-41. MR1432808
- [13] P. LI, Curvature and function theory on riemannian manifolds, preprint. Zbl1066.53084MR1919432
- [14] P. LI, L.F. TAM, Positive harmonic functions on complete manifolds with non-negative Ricci curvature outside a compact set, Ann. Math. 125 ( 1987), 171-207. Zbl0622.58001MR873381
- [15] P. LI, L.F. TAM, Linear growth harmonic functions on a complete manifold, J. Diff. Geom. 29 ( 1989), 421-425. Zbl0668.53023MR982183
- [16] P. LI, L.F. TAM, Complete surface with finite total curvature, J. Diff. Geom. 33 ( 1991), 139-168. Zbl0749.53025MR1085138
- [17] M. SCHOEN, S-T. YAU, Conference Proc. and Lectures Notes in Geometry and topology Vol.I et II, International Press. Zbl0886.53004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.