Formes harmoniques de longueur constante sur les variétés
Séminaire de théorie spectrale et géométrie (2002-2003)
- Volume: 21, page 117-124
- ISSN: 1624-5458
Access Full Article
topHow to cite
topVernicos, Constantin. "Formes harmoniques de longueur constante sur les variétés." Séminaire de théorie spectrale et géométrie 21 (2002-2003): 117-124. <http://eudml.org/doc/114470>.
@article{Vernicos2002-2003,
author = {Vernicos, Constantin},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {compact manifolds; harmonic forms; nilmanifolds},
language = {fre},
pages = {117-124},
publisher = {Institut Fourier},
title = {Formes harmoniques de longueur constante sur les variétés},
url = {http://eudml.org/doc/114470},
volume = {21},
year = {2002-2003},
}
TY - JOUR
AU - Vernicos, Constantin
TI - Formes harmoniques de longueur constante sur les variétés
JO - Séminaire de théorie spectrale et géométrie
PY - 2002-2003
PB - Institut Fourier
VL - 21
SP - 117
EP - 124
LA - fre
KW - compact manifolds; harmonic forms; nilmanifolds
UR - http://eudml.org/doc/114470
ER -
References
top- [BK03a] V. BANGERT and M. KATZ, Stable systolic inequalities and cohomology products, Comm. Pure Appl. Math 56 ( 2003), (in press). Zbl1038.53031MR1990484
- [BK03b] V. BANGERT, Riemannian Manifolds with Harmonie one-forms of constant norm, available at http: //www.math.biu. ac. il / katzmik/publications.html, preprint 2003.
- [ES64] J. EELS and J.P. SAMPSON, Harmonic mappings of Riemannian Manifolds, Am. J. Math. 86 ( 1964), 109-160. Zbl0122.40102MR164306
- [Kot0l] D. KOTSCHICK, On products of harmonic forms, Duke Math. J. 107 ( 2001), no. 3, 521-531. Zbl1036.53030MR1828300
- [Lic69] A. LICHNEROWICZ, Application harmoniques dans un tore,C.R. Acad. Sci. Sér. A 269 ( 1969), 912-916. Zbl0184.25002MR253254
- [Nag0l] P.A. NAGY, Un principe de séparation des variables pour le spectre du laplacien des formes différentielles et applications, Thèse de doctorat, Université de Savoie, 2001, http://www.unine.ch/math/personnel/equipes/nagy/PN.htm.
- [NV04] P.A. NAGY and C. VERNICOS, The length of Harmonie forms on a compact Riemannian manifold, à paraître dans les Transactions of the AMS ( 2004). Zbl1048.53023MR2048527
- [Oni93] A.L. ONISHCHIK (éd.), Lie groups and Lie algebras I, Encyclopaedia of Mathematical Sciences, vol. 20, Springer Verlag, 1993. Zbl0777.00023MR1306737
- [PS61] R.S. PALAIS and T.E. STEWART, Torus bundies over a torus, Proc. Amer. Math. Soc. 12 ( 1961), 26-29. Zbl0102.38702MR123638
- [Ver02] C. VERNICOS, The Macroscopic Spectrum of Nilmanifolds with an Emphasis on the Heisenberg groups, arXiv: math. DG/0210393, 2002. Zbl1087.58004MR2142244
- [War83] F.W. WARNER, Foundations of Differentiable Manifolds and Lie groups, Graduate texts in Mathematics, no. 94, Springer-Verlag, 1983. Zbl0516.58001MR722297
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.