Formes harmoniques de longueur constante sur les variétés

Constantin Vernicos

Séminaire de théorie spectrale et géométrie (2002-2003)

  • Volume: 21, page 117-124
  • ISSN: 1624-5458

How to cite

top

Vernicos, Constantin. "Formes harmoniques de longueur constante sur les variétés." Séminaire de théorie spectrale et géométrie 21 (2002-2003): 117-124. <http://eudml.org/doc/114470>.

@article{Vernicos2002-2003,
author = {Vernicos, Constantin},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {compact manifolds; harmonic forms; nilmanifolds},
language = {fre},
pages = {117-124},
publisher = {Institut Fourier},
title = {Formes harmoniques de longueur constante sur les variétés},
url = {http://eudml.org/doc/114470},
volume = {21},
year = {2002-2003},
}

TY - JOUR
AU - Vernicos, Constantin
TI - Formes harmoniques de longueur constante sur les variétés
JO - Séminaire de théorie spectrale et géométrie
PY - 2002-2003
PB - Institut Fourier
VL - 21
SP - 117
EP - 124
LA - fre
KW - compact manifolds; harmonic forms; nilmanifolds
UR - http://eudml.org/doc/114470
ER -

References

top
  1. [BK03a] V. BANGERT and M. KATZ, Stable systolic inequalities and cohomology products, Comm. Pure Appl. Math 56 ( 2003), (in press). Zbl1038.53031MR1990484
  2. [BK03b] V. BANGERT, Riemannian Manifolds with Harmonie one-forms of constant norm, available at http: //www.math.biu. ac. il / katzmik/publications.html, preprint 2003. 
  3. [ES64] J. EELS and J.P. SAMPSON, Harmonic mappings of Riemannian Manifolds, Am. J. Math. 86 ( 1964), 109-160. Zbl0122.40102MR164306
  4. [Kot0l] D. KOTSCHICK, On products of harmonic forms, Duke Math. J. 107 ( 2001), no. 3, 521-531. Zbl1036.53030MR1828300
  5. [Lic69] A. LICHNEROWICZ, Application harmoniques dans un tore,C.R. Acad. Sci. Sér. A 269 ( 1969), 912-916. Zbl0184.25002MR253254
  6. [Nag0l] P.A. NAGY, Un principe de séparation des variables pour le spectre du laplacien des formes différentielles et applications, Thèse de doctorat, Université de Savoie, 2001, http://www.unine.ch/math/personnel/equipes/nagy/PN.htm. 
  7. [NV04] P.A. NAGY and C. VERNICOS, The length of Harmonie forms on a compact Riemannian manifold, à paraître dans les Transactions of the AMS ( 2004). Zbl1048.53023MR2048527
  8. [Oni93] A.L. ONISHCHIK (éd.), Lie groups and Lie algebras I, Encyclopaedia of Mathematical Sciences, vol. 20, Springer Verlag, 1993. Zbl0777.00023MR1306737
  9. [PS61] R.S. PALAIS and T.E. STEWART, Torus bundies over a torus, Proc. Amer. Math. Soc. 12 ( 1961), 26-29. Zbl0102.38702MR123638
  10. [Ver02] C. VERNICOS, The Macroscopic Spectrum of Nilmanifolds with an Emphasis on the Heisenberg groups, arXiv: math. DG/0210393, 2002. Zbl1087.58004MR2142244
  11. [War83] F.W. WARNER, Foundations of Differentiable Manifolds and Lie groups, Graduate texts in Mathematics, no. 94, Springer-Verlag, 1983. Zbl0516.58001MR722297

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.