Mean curvature flow and self-similar submanifolds

Henri Anciaux

Séminaire de théorie spectrale et géométrie (2002-2003)

  • Volume: 21, page 43-53
  • ISSN: 1624-5458

How to cite


Anciaux, Henri. "Mean curvature flow and self-similar submanifolds." Séminaire de théorie spectrale et géométrie 21 (2002-2003): 43-53. <>.

author = {Anciaux, Henri},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {mean curvature flow; self-similarity},
language = {eng},
pages = {43-53},
publisher = {Institut Fourier},
title = {Mean curvature flow and self-similar submanifolds},
url = {},
volume = {21},
year = {2002-2003},

AU - Anciaux, Henri
TI - Mean curvature flow and self-similar submanifolds
JO - Séminaire de théorie spectrale et géométrie
PY - 2002-2003
PB - Institut Fourier
VL - 21
SP - 43
EP - 53
LA - eng
KW - mean curvature flow; self-similarity
UR -
ER -


  1. [AbLa] U. ABRESCH, J. LANGER, The normalized curves hortening flow and homothetic solutions, J. of differential geometry, 23 ( 1986), 175-196 Zbl0592.53002MR845704
  2. [Anc] H. ANCIAUX, Self-similar equivariant submanifolds in ℝ2n preprint, available at 
  3. [Ang] S. ANGENENT, Shrinking donuts, in Nonlinear diffusion reaction equations & their equilïbrium, States3, editor N.G. Lloyd, Birkauser, Boston, 1992. MR1167827
  4. [AIV] S. ANGENENT, T. ILMANEN, JJ.L. VELÁZQUEZ, Fattening from smooth initial data in mean curvature flow, in préparation. 
  5. [CaUr] I. CASTRO, F. URBANO, On a Minimal Lagrangian Submanifold of Cn Foliated by Spheres, Mich. Math. J., 46 ( 1999), 71-82 Zbl0974.53059MR1682888
  6. [Ch] D.L. CHOPP, Numerical Computations of Self-Similar Solutions for Mean Curvature Flow, Exper. Math. 3 ( 1994), 1-16 Zbl0811.53011MR1302814
  7. [EMS] J. ESCHER, U. MAYER, G. SIMONETT, The surface tension flow for immersed hypersurfaces, SIAM J. Math. Anal. 29 ( 1998), 1419-1433 Zbl0912.35161MR1638074
  8. [Gr] M. GRAYSON, The heat equation shrinks embedded plane curves to round circles Journal of Differential Geometry, 26 ( 1987), 285. Zbl0667.53001MR906392
  9. [HaLa] R. HARVEY, H.B. LAWSON, Calibrated geometries, Actz Mathematica, 148 ( 1982), 47-157. Zbl0584.53021MR666108
  10. [Ham] R. HAMILTON, Three manifolds with positive Ricci curvatures, J. of Diff. Geom. 24 ( 1982), 255-306. Zbl0504.53034MR664497
  11. [Hu] G. HUISKEN, Flow by Mean Curvature of Convex Surfaces into Spheres, Journal of Differential Geometry, 20 ( 1984), 237-266. Zbl0556.53001MR772132
  12. [Hull] G. HUISKEN and T. ILMANENThe inverse mean curvature flow and the Riemannian Penrose inequality available to Zbl1055.53052
  13. [II] TOM ILMANEN, Lectures on the mean curvature flow, Zbl0759.53035
  14. [KuSc] E. KUWERT AND R. SCHATLZE, The Willmore flow with small initial energy, Journal of Differential Geometry, 57 ( 1998),1-22. Zbl1035.53092
  15. [Oh] Y. G. OH, Second variation and stabilities of minimal Lagrangian submanifolds in Kaher manifolds, Invent. Math., 101 ( 1990), 501-519. Zbl0721.53060MR1062973
  16. [Pe] G. PERELMAN, The entropy formula for the Ricci flow and its geometrie application, preprint DG/0211159. Zbl1130.53001
  17. [Sm] K. SMOCZYK, Angle theorems for the Lagrangian mean curvature flow, preprint dg-da/9605005. Zbl1020.53045MR1922733
  18. [Wa] M.-T. WANG, Mean Curvature Flows in Higher Codimension, proceedings of International Congress of Chinese Mathematicians, 2001. 
  19. [Wi] T.J. WILLMORE, Riemannian geometry, Oxford Sciences Publications. Zbl0797.53002MR1261641

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.