Mean curvature flow and self-similar submanifolds
Séminaire de théorie spectrale et géométrie (2002-2003)
- Volume: 21, page 43-53
- ISSN: 1624-5458
Access Full Article
topHow to cite
topAnciaux, Henri. "Mean curvature flow and self-similar submanifolds." Séminaire de théorie spectrale et géométrie 21 (2002-2003): 43-53. <http://eudml.org/doc/114475>.
@article{Anciaux2002-2003,
author = {Anciaux, Henri},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {mean curvature flow; self-similarity},
language = {eng},
pages = {43-53},
publisher = {Institut Fourier},
title = {Mean curvature flow and self-similar submanifolds},
url = {http://eudml.org/doc/114475},
volume = {21},
year = {2002-2003},
}
TY - JOUR
AU - Anciaux, Henri
TI - Mean curvature flow and self-similar submanifolds
JO - Séminaire de théorie spectrale et géométrie
PY - 2002-2003
PB - Institut Fourier
VL - 21
SP - 43
EP - 53
LA - eng
KW - mean curvature flow; self-similarity
UR - http://eudml.org/doc/114475
ER -
References
top- [AbLa] U. ABRESCH, J. LANGER, The normalized curves hortening flow and homothetic solutions, J. of differential geometry, 23 ( 1986), 175-196 Zbl0592.53002MR845704
- [Anc] H. ANCIAUX, Self-similar equivariant submanifolds in ℝ2n preprint, available at http://www.phys.univ-tours.fr/~anciaux/papers/self.ps
- [Ang] S. ANGENENT, Shrinking donuts, in Nonlinear diffusion reaction equations & their equilïbrium, States3, editor N.G. Lloyd, Birkauser, Boston, 1992. MR1167827
- [AIV] S. ANGENENT, T. ILMANEN, JJ.L. VELÁZQUEZ, Fattening from smooth initial data in mean curvature flow, in préparation.
- [CaUr] I. CASTRO, F. URBANO, On a Minimal Lagrangian Submanifold of Cn Foliated by Spheres, Mich. Math. J., 46 ( 1999), 71-82 Zbl0974.53059MR1682888
- [Ch] D.L. CHOPP, Numerical Computations of Self-Similar Solutions for Mean Curvature Flow, Exper. Math. 3 ( 1994), 1-16 Zbl0811.53011MR1302814
- [EMS] J. ESCHER, U. MAYER, G. SIMONETT, The surface tension flow for immersed hypersurfaces, SIAM J. Math. Anal. 29 ( 1998), 1419-1433 Zbl0912.35161MR1638074
- [Gr] M. GRAYSON, The heat equation shrinks embedded plane curves to round circles Journal of Differential Geometry, 26 ( 1987), 285. Zbl0667.53001MR906392
- [HaLa] R. HARVEY, H.B. LAWSON, Calibrated geometries, Actz Mathematica, 148 ( 1982), 47-157. Zbl0584.53021MR666108
- [Ham] R. HAMILTON, Three manifolds with positive Ricci curvatures, J. of Diff. Geom. 24 ( 1982), 255-306. Zbl0504.53034MR664497
- [Hu] G. HUISKEN, Flow by Mean Curvature of Convex Surfaces into Spheres, Journal of Differential Geometry, 20 ( 1984), 237-266. Zbl0556.53001MR772132
- [Hull] G. HUISKEN and T. ILMANENThe inverse mean curvature flow and the Riemannian Penrose inequality available to http://www.math.ethz.ch/~ilmanen./papers/hp.ps. Zbl1055.53052
- [II] TOM ILMANEN, Lectures on the mean curvature flow, http://www.math.ethz.ch/~ilmanen/papers/notes.ps. Zbl0759.53035
- [KuSc] E. KUWERT AND R. SCHATLZE, The Willmore flow with small initial energy, Journal of Differential Geometry, 57 ( 1998),1-22. Zbl1035.53092
- [Oh] Y. G. OH, Second variation and stabilities of minimal Lagrangian submanifolds in Kaher manifolds, Invent. Math., 101 ( 1990), 501-519. Zbl0721.53060MR1062973
- [Pe] G. PERELMAN, The entropy formula for the Ricci flow and its geometrie application, preprint DG/0211159. Zbl1130.53001
- [Sm] K. SMOCZYK, Angle theorems for the Lagrangian mean curvature flow, preprint dg-da/9605005. Zbl1020.53045MR1922733
- [Wa] M.-T. WANG, Mean Curvature Flows in Higher Codimension, proceedings of International Congress of Chinese Mathematicians, 2001.
- [Wi] T.J. WILLMORE, Riemannian geometry, Oxford Sciences Publications. Zbl0797.53002MR1261641
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.