Propriétés de Lefschetz dans la cohomologie de certaines variétés arithmétiques : le cas des surfaces modulaires de Hilbert

Nicolas Bergeron

Séminaire de théorie spectrale et géométrie (2002-2003)

  • Volume: 21, page 75-101
  • ISSN: 1624-5458

How to cite

top

Bergeron, Nicolas. "Propriétés de Lefschetz dans la cohomologie de certaines variétés arithmétiques : le cas des surfaces modulaires de Hilbert." Séminaire de théorie spectrale et géométrie 21 (2002-2003): 75-101. <http://eudml.org/doc/114478>.

@article{Bergeron2002-2003,
author = {Bergeron, Nicolas},
journal = {Séminaire de théorie spectrale et géométrie},
language = {fre},
pages = {75-101},
publisher = {Institut Fourier},
title = {Propriétés de Lefschetz dans la cohomologie de certaines variétés arithmétiques : le cas des surfaces modulaires de Hilbert},
url = {http://eudml.org/doc/114478},
volume = {21},
year = {2002-2003},
}

TY - JOUR
AU - Bergeron, Nicolas
TI - Propriétés de Lefschetz dans la cohomologie de certaines variétés arithmétiques : le cas des surfaces modulaires de Hilbert
JO - Séminaire de théorie spectrale et géométrie
PY - 2002-2003
PB - Institut Fourier
VL - 21
SP - 75
EP - 101
LA - fre
UR - http://eudml.org/doc/114478
ER -

References

top
  1. [1] N. BERGERON. Premier nombre de Betti et spectre du laplacien de certaines variétés hyperboliques. Enseign. Math., 46:109, 2000. Zbl0969.58009MR1769939
  2. [2] N. BERGERON. Asymptotique de la norme L2 d'un cycle géodésique dans les revêtements de congruence d'une variété hyperbolique arithmétique. Math. Z., 241:101-125, 2002. Zbl1021.53023MR1930987
  3. [3] N. BERGERON. Lefschetz Properties for Arithmetic Real and Complex Hyperbolic Manifolds. Int. Math. Res. Not., pages 1089-1122, 2003. Zbl1036.11021MR1963482
  4. [4] N. BERGERON and L. CLOZEL. Sur le spectre et l'homologie des variétés hyperboliques rélles et complexes de congruence. in préparation. 
  5. [5] N. BERGERON and L. CLOZEL. Spectre et Homologie des variétés hyperboliques complexes de congruence. C.R. Math. Acad. Sci., 334:995-998, 2002. Zbl1011.32020MR1913724
  6. [6] S. GELBART and H. JACQUET. A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. École Norm. Sup., 11:471-542, 1978. Zbl0406.10022MR533066
  7. [7] M. HARRIS and J.S. LI. A Lefschetz property for subvarieties of Shimura varieties. J. Algebraic Geometry, 7:77-122, 1998. Zbl0954.14016MR1620690
  8. [8] H. JACQUET and R.P. LANGLANDS. Automorphic forms on GL(2), volume 114 of Lecture Notes in Mathematics. Springer Verlag, 1970. Zbl0236.12010MR401654
  9. [9] S. KOBAYASHI and K. NOMIZU. Foundations of differential geometry. Vol II. Wiley Interscience Publication, 1969. Zbl0175.48504MR1393941
  10. [10] S.S. KUDLA and J.J. MILLSON. Harmonic differentials and closed geodesics on a Riemann surface. Invent. Math., 54:193-211, 1979. Zbl0429.30038MR553218
  11. [11] S.S. KUDLA and J.J. MILLSON. The Poincaré dual of a geodesic algebraic curve in a quotient of the 2-ball. Canad. J. Math., 33:485-499, 1981. Zbl0506.32013MR617638
  12. [12] T. ODA. A note on the Albanese variety of an arithmetic quotient of the complex hyperball. J. Fac. Sci. Univ. Tokyo, Sect. lA Math., 28:481-486, 1981. Zbl0528.14022MR656032
  13. [13] V. PLATONOV and A. RAPINCHUK. Algebraic groups and number theory. Translated from the 1991 Russian original by Rachel Rowen. Pure and Applied Mathematics, 139. Academic Press, Inc., Boston, MA, 1994. Zbl0841.20046MR1278263
  14. [14] T.N. VENKATARAMANA. Cohomology of compact locally symmetric spaces. Compositio Math., 125:221-253, 2001. Zbl0983.11027MR1815394

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.