La K -aire selon M. Gromov

Hélène Davaux

Séminaire de théorie spectrale et géométrie (2002-2003)

  • Volume: 21, page 9-35
  • ISSN: 1624-5458

How to cite

top

Davaux, Hélène. "La $K$-aire selon M. Gromov." Séminaire de théorie spectrale et géométrie 21 (2002-2003): 9-35. <http://eudml.org/doc/114479>.

@article{Davaux2002-2003,
author = {Davaux, Hélène},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {K-area; stable K-area; scalar curvature; Riemannian invariants; enlargeable manifolds; dilatation of maps; norm of the curvature},
language = {fre},
pages = {9-35},
publisher = {Institut Fourier},
title = {La $K$-aire selon M. Gromov},
url = {http://eudml.org/doc/114479},
volume = {21},
year = {2002-2003},
}

TY - JOUR
AU - Davaux, Hélène
TI - La $K$-aire selon M. Gromov
JO - Séminaire de théorie spectrale et géométrie
PY - 2002-2003
PB - Institut Fourier
VL - 21
SP - 9
EP - 35
LA - fre
KW - K-area; stable K-area; scalar curvature; Riemannian invariants; enlargeable manifolds; dilatation of maps; norm of the curvature
UR - http://eudml.org/doc/114479
ER -

References

top
  1. [Bau91] H. BAUM, An upper bound for the first eigenvalue of the Dirac oprator on compact spin manifold. Math. Z., 206-3 ( 1991), 409-422. Zbl0722.53036MR1095763
  2. [BK78] J.-P. BOURGUIGNON et H. KARCHER, Curvature operators: pinching estimates and geometrie examples. Ann. Sci. École Norm. Sup. (4), 11-1 ( 1978), 71-92. Zbl0386.53031MR493867
  3. [BK81] R. BUSER et H. KARCHER, Gromov's almost flat manifolds. Société Mathématique de France, Paris, 1981. Zbl0459.53031
  4. [Dav02] H. DAVAUX, K-aire et courbure scalaire des variétés riemanniennes. Thèse de l'Université Montpellier II, 2002. 
  5. [GHL90] S. GALLOT, D. HULIN et J. LAFONTAINE, Riemannian geometry. Springer-Verlag, Berlin, second edition, 1990. Zbl0716.53001MR1083149
  6. [GL80a] M. GROMOV et H. BLAINE LAWSON, The classification of simply connected manifolds of positive, scalar curvature. Ann. of Math. (2), 11-3 ( 1980), 423-434. Zbl0463.53025MR577131
  7. [GL80b] M. GROMOV et H. BLAINE LAWSON, Spin and scalar curvature in the presence of a fundamental group, J.Ann. of Math. (2), 111-2 ( 1980), 209-230. Zbl0445.53025MR569070
  8. [GL83] M. GROMOV et H. BLAINE LAWSON, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math., 58 ( 1984), 83-196. Zbl0538.53047MR720933
  9. [Gro81 ] M. GROMOV, Structures métriques pour les variétés riemanniennes. CEDIC, Paris, 1981. Zbl0509.53034MR682063
  10. [Gro96] M. GROMOV, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, In Functional analysis on the eve of the 21 st century, Vol. II (New Brunswick, NJ, 1993), pages 1-213. Birkhäuser Boston, MA, 1996. Zbl0945.53022MR1389019
  11. [Hus94] D. HUSEMOLLER, Fibre bundies, Springer-Verlag, New York, third edition, 1994. Zbl0307.55015MR1249482
  12. [Kar77] H. KARCHER, Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math., 30 5 ( 1977), 509-541 Zbl0354.57005MR442975
  13. [LM89] H. BLAINE LAWSON et M.-L. MICHELSOHN, Spin geometry, Princeton University Press, Princeton, NJ, 1989. Zbl0688.57001MR1031992
  14. [Ste57] N. STEENROD, The Topology of Fibre Bundles, Princeton University Press, Princeton, NJ, 1957. Zbl0942.55002MR39258

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.