La -aire selon M. Gromov
Séminaire de théorie spectrale et géométrie (2002-2003)
- Volume: 21, page 9-35
- ISSN: 1624-5458
Access Full Article
topHow to cite
topDavaux, Hélène. "La $K$-aire selon M. Gromov." Séminaire de théorie spectrale et géométrie 21 (2002-2003): 9-35. <http://eudml.org/doc/114479>.
@article{Davaux2002-2003,
author = {Davaux, Hélène},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {K-area; stable K-area; scalar curvature; Riemannian invariants; enlargeable manifolds; dilatation of maps; norm of the curvature},
language = {fre},
pages = {9-35},
publisher = {Institut Fourier},
title = {La $K$-aire selon M. Gromov},
url = {http://eudml.org/doc/114479},
volume = {21},
year = {2002-2003},
}
TY - JOUR
AU - Davaux, Hélène
TI - La $K$-aire selon M. Gromov
JO - Séminaire de théorie spectrale et géométrie
PY - 2002-2003
PB - Institut Fourier
VL - 21
SP - 9
EP - 35
LA - fre
KW - K-area; stable K-area; scalar curvature; Riemannian invariants; enlargeable manifolds; dilatation of maps; norm of the curvature
UR - http://eudml.org/doc/114479
ER -
References
top- [Bau91] H. BAUM, An upper bound for the first eigenvalue of the Dirac oprator on compact spin manifold. Math. Z., 206-3 ( 1991), 409-422. Zbl0722.53036MR1095763
- [BK78] J.-P. BOURGUIGNON et H. KARCHER, Curvature operators: pinching estimates and geometrie examples. Ann. Sci. École Norm. Sup. (4), 11-1 ( 1978), 71-92. Zbl0386.53031MR493867
- [BK81] R. BUSER et H. KARCHER, Gromov's almost flat manifolds. Société Mathématique de France, Paris, 1981. Zbl0459.53031
- [Dav02] H. DAVAUX, K-aire et courbure scalaire des variétés riemanniennes. Thèse de l'Université Montpellier II, 2002.
- [GHL90] S. GALLOT, D. HULIN et J. LAFONTAINE, Riemannian geometry. Springer-Verlag, Berlin, second edition, 1990. Zbl0716.53001MR1083149
- [GL80a] M. GROMOV et H. BLAINE LAWSON, The classification of simply connected manifolds of positive, scalar curvature. Ann. of Math. (2), 11-3 ( 1980), 423-434. Zbl0463.53025MR577131
- [GL80b] M. GROMOV et H. BLAINE LAWSON, Spin and scalar curvature in the presence of a fundamental group, J.Ann. of Math. (2), 111-2 ( 1980), 209-230. Zbl0445.53025MR569070
- [GL83] M. GROMOV et H. BLAINE LAWSON, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math., 58 ( 1984), 83-196. Zbl0538.53047MR720933
- [Gro81 ] M. GROMOV, Structures métriques pour les variétés riemanniennes. CEDIC, Paris, 1981. Zbl0509.53034MR682063
- [Gro96] M. GROMOV, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, In Functional analysis on the eve of the 21 st century, Vol. II (New Brunswick, NJ, 1993), pages 1-213. Birkhäuser Boston, MA, 1996. Zbl0945.53022MR1389019
- [Hus94] D. HUSEMOLLER, Fibre bundies, Springer-Verlag, New York, third edition, 1994. Zbl0307.55015MR1249482
- [Kar77] H. KARCHER, Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math., 30 5 ( 1977), 509-541 Zbl0354.57005MR442975
- [LM89] H. BLAINE LAWSON et M.-L. MICHELSOHN, Spin geometry, Princeton University Press, Princeton, NJ, 1989. Zbl0688.57001MR1031992
- [Ste57] N. STEENROD, The Topology of Fibre Bundles, Princeton University Press, Princeton, NJ, 1957. Zbl0942.55002MR39258
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.