Moyennes harmoniques
- [1] Departamento de Xeometría e Topoloxía, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela (Espagne)
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 493-512
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Adams (S.).— Trees and amenable equivalence relations. Ergodic Theory Dynam. Systems, 10, p. 1-14 (1990). Zbl0667.28003MR1053796
- Alcalde Cuesta (F.), Bermúdez (M.).— Une remarque sur les relations d’équivalence graphées, munies de mesures harmoniques. C. R. Acad. Sci. Paris, 332, p. 637-640 (2001). Zbl1004.37003MR1841899
- Alcalde Cuesta (F.), Fernández de Córdoba (M. P.).— Nombre de branchement d’un pseudogroupe. À paraître dans Monatshefte für Mathematik. DOI 10.1007/s00605-010-0230-z.
- Anantharaman-Delaroche (C.), Renault (J.).— Amenable groupoids. Monographies de L’Enseignement Mathématique, 36. L’Enseignement Mathématique, Genève (2000). Zbl0960.43003MR1799683
- Blanc (E.).— Propriétés génériques des laminations. Thèse UCB-Lyon 1 (2001).
- Connes (A.), Feldman (J.), Weiss (B.).— An amenable equivalence relation is generated by a single transformation. Ergodic Theory Dynam. Systems, 1, p. 431-450 (1981). Zbl0491.28018MR662736
- Dye (H. A.).— On groups of measure preserving transformations, I. Amer. J. Math., 81, p. 119-1159 (1959). Zbl0087.11501MR131516
- Dye (H. A.).— On groups of measure preserving transformations, II. Amer. J. Math., 85, p. 551-576 (1963). Zbl0191.42803MR158048
- Feldman (J.), Moore (C.).— Ergodic equivalence relations, cohomology and Von Neumann algebras, I. Trans. Amer. Math. Soc., 234, p. 289-324 (1977). Zbl0369.22009MR578656
- Foguel (S. R.).— Iterates if a convolution on a non abelian group. Ann. Inst. Henri Poincaré Section B, 11, p. 199-202 (1975). Zbl0312.60004MR400332
- Foguel (S. R.).— Harris operators. Israel J. Math., 33, p. 281-309 (1979). Zbl0434.60012MR571535
- Garnett (L.).— Foliations, The Ergodic Theorem and Brownian Motion. J. Funct. Anal., 51, p. 285-311 (1983). Zbl0524.58026MR703080
- Greenleaf (F. P.).— Invariant means on topological groups. Van Nostrand Math. Studies 16, Van Nostrand, New York (1969). Zbl0174.19001MR251549
- Kaimanovich (V. A.).— Brownian motion on foliations : entropy, invariant measures, mixing. Funct. Anal. Appl., 22, p. 326-328 (1988). Zbl0675.58039MR977003
- Kaimanovich (V. A.).— Amenability, hyperfiniteness, and isoperimetric inequalities. C. R. Acad. Sc. Paris, 325, p. 999-1004 (1997). Zbl0981.28014MR1485618
- Kaimanovich (V. A.).— Hausdorff dimension of the harmonic measure on trees. Ergodic Theory Dynam. Systems, 18 (1998), 631-660. Zbl0960.60047MR1631732
- Kaimanovich (V. A.).— Equivalence relations with amenable leaves need not be amenables. Amer. Math. Soc. Transl., 202, 151-166 (2001). Zbl0990.28013MR1819187
- Kaimanovich (V. A.).— Amenability and the Liouville property. Israel J. Math., 149, p. 45-85 (2005). Zbl1080.43003MR2191210
- Kaimanovich (V. A.), Vershik (A. M.).— Random walks on discrete groups : boundary and entropy. Ann. Probab., 11, p. 457-490 (1983). Zbl0641.60009MR704539
- Krengel (U.).— Ergodic Theorems. Walter de Gruyter, Berlin (1985). Zbl0575.28009MR797411
- Lyons (R.).— Random walks and percolation on trees. Ann. Probab., 18 p. 931-958 (1990). Zbl0714.60089MR1062053
- Meyer (p. A.).— Limites médiales d’après Mokobodzki, in Séminaire de Probabilités VII, Université de Strasbourg. Lecture Notes in Math. 321, Springer, Berlin, p. 198-204 (1973). Zbl0262.28005MR404564
- Nash-Willliams (C. St. J. A.).— Random walks and electric currents in networks. Proc. Cambridge Philos. Soc.55, p. 181-194 (1959). Zbl0100.13602MR124932
- Ornstein (D.), Sucheston (L.).— An operator theorem on convergence to zero with applications to Markov kernels. Ann. Math. Statist., 41, p. 1631-1639 (1970). Zbl0284.60068MR272057
- Paterson (A. L.).— Amenability. American Mathematical Society, Providence (1988). Zbl0648.43001MR961261
- Paulin (F.).— Propriétés asymptotiques des relations d’équivalences mesurées discrètes. Markov Process. Related Fields, 5, p. 163-200 (1999). Zbl0937.28015MR1762172
- Samuélidès (M.).— Tout feuilletage à croissance polynomiale est hyperfini. J. Funct. Anal., 34, p. 363-369 (1979). Zbl0491.28019MR556261
- Series (C.).— Foliations of polynomial growth are hyperfinite. Israel J. Math., 34, p. 245-258 (1979). Zbl0436.28015MR570884
- Virág (B.).— On the speed of random walks on graphs. Ann. Probab., 28, p. 379-394 (2000). Zbl1044.60034MR1756009
- Zimmer (R. J.).— Hyperfinite factors and amenable ergodic actions. Invent. Math., 41, p. 23-31 (1977). Zbl0361.46061MR470692
- Zimmer (R. J.).— Ergodic Theory and Semisimple Groups. Birkhäuser, Boston (1984). Zbl0571.58015MR776417