The -Classes of Archimedean -groups with Weak Unit
Bernhard Banaschewski[1]; Anthony Hager[2]
- [1] Department of Mathematics, McMaster University, Hamilton, Ontario 68S4K1 Canada
- [2] Department of Mathematics and Computer Science Wesleyan University, Middletown, CT 06459 USA
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: S1, page 13-24
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBanaschewski, Bernhard, and Hager, Anthony. "The $HSP$-Classes of Archimedean $l$-groups with Weak Unit." Annales de la faculté des sciences de Toulouse Mathématiques 19.S1 (2010): 13-24. <http://eudml.org/doc/115862>.
@article{Banaschewski2010,
abstract = {$W$ denotes the class of abstract algebras of the title (with homomorphisms preserving unit). The familiar $H, S,$ and $P$ from universal algebra are here meant in $W$. $\mathbb\{Z\}$ and $\mathbb\{R\}$ denote the integers and the reals, with unit 1, qua$W$-objects. $V$ denotes a non-void finite set of positive integers. Let $\mathcal\{G\}\subseteq W$ be non-void and not $\lbrace \lbrace 0\rbrace \rbrace $. We show(1), and(2) if and only if Our proofs are, for the most part, simple calculations. There is no real use of methods of universal algebra (e.g., free objects), and only one restricted use of representation theory (Yosida). Note that (1) implies the basic fact that $HSP\mathbb\{R\}= W$ (which can be proved in several ways). Note that (2) contrasts $W$ with $\mathcal\{C\} = $ archimedean $l$-groups, and $\mathcal\{C\} =$ abelian $l$-groups, where $HSP\mathbb\{Z\}= \mathcal\{C\}$ in each case.},
affiliation = {Department of Mathematics, McMaster University, Hamilton, Ontario 68S4K1 Canada; Department of Mathematics and Computer Science Wesleyan University, Middletown, CT 06459 USA},
author = {Banaschewski, Bernhard, Hager, Anthony},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {4},
number = {S1},
pages = {13-24},
publisher = {Université Paul Sabatier, Toulouse},
title = {The $HSP$-Classes of Archimedean $l$-groups with Weak Unit},
url = {http://eudml.org/doc/115862},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Banaschewski, Bernhard
AU - Hager, Anthony
TI - The $HSP$-Classes of Archimedean $l$-groups with Weak Unit
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/4//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - S1
SP - 13
EP - 24
AB - $W$ denotes the class of abstract algebras of the title (with homomorphisms preserving unit). The familiar $H, S,$ and $P$ from universal algebra are here meant in $W$. $\mathbb{Z}$ and $\mathbb{R}$ denote the integers and the reals, with unit 1, qua$W$-objects. $V$ denotes a non-void finite set of positive integers. Let $\mathcal{G}\subseteq W$ be non-void and not $\lbrace \lbrace 0\rbrace \rbrace $. We show(1), and(2) if and only if Our proofs are, for the most part, simple calculations. There is no real use of methods of universal algebra (e.g., free objects), and only one restricted use of representation theory (Yosida). Note that (1) implies the basic fact that $HSP\mathbb{R}= W$ (which can be proved in several ways). Note that (2) contrasts $W$ with $\mathcal{C} = $ archimedean $l$-groups, and $\mathcal{C} =$ abelian $l$-groups, where $HSP\mathbb{Z}= \mathcal{C}$ in each case.
LA - eng
UR - http://eudml.org/doc/115862
ER -
References
top- R. Ball, A. Hager, A new characterization of the continuous functions on a locale, Positivity 10, 165-199 (2006) Zbl1101.06007MR2223592
- B. Banaschewski, On the function ring functor in point-free topology, Appl. Categ. Str. 13(2005), 305-328. Zbl1158.54308MR2175953
- B. Banaschewski, On the function rings of point-free topology, Kyungpook Math. J. 48 (2008), 195-206. Zbl1155.06008MR2429308
- R. Cignoli, I. D’Ottavigno, D. Mundici,Algebraic foundations of many-solved reasoning, Kluwer (2000). Zbl0937.06009
- M. Darnel, Theory of lattice -ordered groups, Dekker (1995). Zbl0810.06016MR1304052
- L. Gillman, M. Jerison, Rings of continuous functions, Van Nostrand (1960). Zbl0093.30001MR116199
- A. Hager, Algebraic closures of -groups of continuous functions, pp. 165 - 193 in Rings of Continuous Functions (C. Aull, Editor), Dekker Notes 95 (1985). Zbl0616.06017MR789270
- A. Hager, C. Kimber, Uniformly hyperarchimedean lattice-ordered groups, Order 24 (2007), 121-131. Zbl1128.06007MR2367346
- A. Hager, J. Martinez, Singular archimedean lattice-ordered groups, Alg. Univ. 40(1998), 119-147. Zbl0936.06015MR1651866
- A. Hager, L. Robertson, Representing and ringifying a Riesz space, Symp. Math. 21 (1977), 411-431. Zbl0382.06018MR482728
- M. Henriksen, J. lsbell, Lattice-ordered rings and function rings, Pac. J. Math. 12 (1962), 533-565.r Zbl0111.04302MR153709
- M. Henriksen, J. Isbell, D. Johnson, Residue class fields of lattice-ordered algebras, Fund. Math. 50 (1965), 107-117 Zbl0101.33401MR133350
- J. Isbell, Atomless parts of spaces, Math. Scand. 31 (1972), 5 - 32. Zbl0246.54028MR358725
- W. Luxemburg, A. Zaanen, Riesz spaces I, North-Holland (1971). Zbl0231.46014
- R. Pierce, Introduction to the theory of abstract algebras, Holt, Rinehart and Winston (1968). MR227070
- E. Weinberg, Lectures on ordered groups and rings, Univ. of Illinois (1968).
- K. Yosida, On the representation of the vector lattice, Proc. Imp. Acad. (Tokyo) 18, 339-343, (1942). Zbl0063.09070MR15378
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.