A Liouville theorem for plurisubharmonic currents

Fredj Elkhadhra[1]; Souad Mimouni[1]

  • [1] Département de Mathématique, Faculté des sciences de Monastir, 5000 Monastir Tunisie.

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 651-674
  • ISSN: 0240-2963

Abstract

top
The goal of this paper is to extend the concepts of algebraic and Liouville currents, previously defined for positive closed currents by M. Blel, S. Mimouni and G. Raby, to psh currents on n . Thus, we study the growth of the projective mass of positive currents on n whose support is contained in a tubular neighborhood of an algebraic subvariety. We also give a sufficient condition guaranteeing that a negative psh current is Liouville. Moreover, we prove that every negative psh algebraic current is Liouville. For the particular case of closed currents, under adequate support conditions, we obtain a structure theorem.

How to cite

top

Elkhadhra, Fredj, and Mimouni, Souad. "A Liouville theorem for plurisubharmonic currents." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 651-674. <http://eudml.org/doc/115872>.

@article{Elkhadhra2010,
abstract = {The goal of this paper is to extend the concepts of algebraic and Liouville currents, previously defined for positive closed currents by M. Blel, S. Mimouni and G. Raby, to psh currents on $\{\mathbb\{C\}\}^n$. Thus, we study the growth of the projective mass of positive currents on $\{\mathbb\{C\}\}^n$ whose support is contained in a tubular neighborhood of an algebraic subvariety. We also give a sufficient condition guaranteeing that a negative psh current is Liouville. Moreover, we prove that every negative psh algebraic current is Liouville. For the particular case of closed currents, under adequate support conditions, we obtain a structure theorem.},
affiliation = {Département de Mathématique, Faculté des sciences de Monastir, 5000 Monastir Tunisie.; Département de Mathématique, Faculté des sciences de Monastir, 5000 Monastir Tunisie.},
author = {Elkhadhra, Fredj, Mimouni, Souad},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {plurisubharmonic currents; Liouville currents; negative psh current; algebraic current; closed currents},
language = {eng},
number = {3-4},
pages = {651-674},
publisher = {Université Paul Sabatier, Toulouse},
title = {A Liouville theorem for plurisubharmonic currents},
url = {http://eudml.org/doc/115872},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Elkhadhra, Fredj
AU - Mimouni, Souad
TI - A Liouville theorem for plurisubharmonic currents
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 651
EP - 674
AB - The goal of this paper is to extend the concepts of algebraic and Liouville currents, previously defined for positive closed currents by M. Blel, S. Mimouni and G. Raby, to psh currents on ${\mathbb{C}}^n$. Thus, we study the growth of the projective mass of positive currents on ${\mathbb{C}}^n$ whose support is contained in a tubular neighborhood of an algebraic subvariety. We also give a sufficient condition guaranteeing that a negative psh current is Liouville. Moreover, we prove that every negative psh algebraic current is Liouville. For the particular case of closed currents, under adequate support conditions, we obtain a structure theorem.
LA - eng
KW - plurisubharmonic currents; Liouville currents; negative psh current; algebraic current; closed currents
UR - http://eudml.org/doc/115872
ER -

References

top
  1. Alessandrini (L.), Bassanelli (G.).— Positive ¯ - closed currents and non Kähler geometry. J. Geom. Analysis., 2, p. 291-316 (1992). Zbl0735.32008MR1170477
  2. Ben Messaoud (H.), El Mir (H.).— Opérateur de Monge-Ampère et formule de Tranchage pour un courant positif fermé. CRAS. Paris, t. 321, serie I, p. 277-282 (1995). Zbl0853.32005MR1346126
  3. Blel (M.), Mimouni (S.K.), Raby (G.).— Courants algébriques et courants de Liouville. Ann. Pol. Math., 86, p. 245-271 (2005). Zbl1095.32005MR2207637
  4. Bedford (E.), Smillie (J.).— Polynimial diffeomorphisms of 2 : currents, equilibrium measure and hyperbolicity. Inven. Math., 103, p. 69-99 (1991). Zbl0721.58037MR1079840
  5. Coman (D.), Guedj (V.).— Invariant Currents and Dynamical Lelong Numbers. J. Geom. Analysis., V.14, No.2, p. 199-213 (2004). Zbl1080.37050MR2051683
  6. Chirka (E.M.).— Complex Analytic sets, Math and Its Applications. Vol. 46. Kluwer Academic Publishers, Dordrecht/Boston/London, (1989). Zbl0683.32002MR1111477
  7. Dabbek (K.), Elkhadhra (F.), El Mir (H.).— Extension of plurisubharmonic currents. Math. Z., 245, p. 455-481 (2003). Zbl1046.32009MR2021566
  8. Demailly (J.-P.).— Potential theory in several complex variables. Cours École d’été CIMPA. Nice, juillet (1989). 
  9. Dinh (T.C.), Lawrence (M.).— Polynomial hulls and positive currents. Ann. Fac. Sci. Toulouse., V. 12, No.3, 317-334 (2003). Zbl1065.32004MR2030090
  10. Dujardin (R.).— Dynamique d’applications non polynomiales et courants laminaires. Thèse d’Université Paris XI, Orsay (2002). 
  11. Duval (J.), Sibony (N.).— Polynomial convexity, rational convexity, and currents. Duke Math. J., 79, No.2, p. 487-513 (1995). Zbl0838.32006MR1344768
  12. El Mir (H.).— Sur le prolongement des courants positifs fermés. Acta Math., 153, p. 1-45 (1984). Zbl0557.32003MR744998
  13. Elkhadhra (F.), Mimouni (S.).— Courants positifs à support dans une bande. CRAS., Paris, t.341, serie I, p. 549-554 (2005). Zbl1080.32008MR2181392
  14. Fornaess (J.E.), Sibony (N.).— Harmonic Currents of finite energy and laminations. GAFA., V. 15, p. 962-1003 (2005). Zbl1115.32020MR2221156
  15. Garnett (L.).— Foliations, the ergodic theorem and brownian motion. J. Funct. Analysis., 51, p. 285-311 (1983). Zbl0524.58026MR703080
  16. Gelfand (I. M.), Kapranov (M. M.), Zelevinsky (A. V.).— Discriminants, resultants, and multidimentional determinants. Birkhäuser Boston, Inc., MA, (1994). x+523. Zbl1138.14001
  17. Giret (S.).— Sur le tranchage et le prolongement de courant. Thèse universitaire, Poitiers (1998). 
  18. Harvey (R.), Lawson (B.J.).— An intrinsic characterization of Kähler manifolds. Inven. Math., 74, p. 169-198 (1983). Zbl0553.32008MR723213
  19. Lelong (P.).— Fonctions plurisousharmoniques d’ordre fini dans n . J. Analyse. Math. Jerusalem., 12, p. 365-407 (1964). Zbl0126.29602MR166391
  20. Mimouni (S.K.).— Théorème de type Liouville pour les courants positifs fermés. CRAS., t. 331, serie I, p. 611-616 (2000). MR1799098

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.