A Liouville theorem for plurisubharmonic currents
Fredj Elkhadhra[1]; Souad Mimouni[1]
- [1] Département de Mathématique, Faculté des sciences de Monastir, 5000 Monastir Tunisie.
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 651-674
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topElkhadhra, Fredj, and Mimouni, Souad. "A Liouville theorem for plurisubharmonic currents." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 651-674. <http://eudml.org/doc/115872>.
@article{Elkhadhra2010,
abstract = {The goal of this paper is to extend the concepts of algebraic and Liouville currents, previously defined for positive closed currents by M. Blel, S. Mimouni and G. Raby, to psh currents on $\{\mathbb\{C\}\}^n$. Thus, we study the growth of the projective mass of positive currents on $\{\mathbb\{C\}\}^n$ whose support is contained in a tubular neighborhood of an algebraic subvariety. We also give a sufficient condition guaranteeing that a negative psh current is Liouville. Moreover, we prove that every negative psh algebraic current is Liouville. For the particular case of closed currents, under adequate support conditions, we obtain a structure theorem.},
affiliation = {Département de Mathématique, Faculté des sciences de Monastir, 5000 Monastir Tunisie.; Département de Mathématique, Faculté des sciences de Monastir, 5000 Monastir Tunisie.},
author = {Elkhadhra, Fredj, Mimouni, Souad},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {plurisubharmonic currents; Liouville currents; negative psh current; algebraic current; closed currents},
language = {eng},
number = {3-4},
pages = {651-674},
publisher = {Université Paul Sabatier, Toulouse},
title = {A Liouville theorem for plurisubharmonic currents},
url = {http://eudml.org/doc/115872},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Elkhadhra, Fredj
AU - Mimouni, Souad
TI - A Liouville theorem for plurisubharmonic currents
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 651
EP - 674
AB - The goal of this paper is to extend the concepts of algebraic and Liouville currents, previously defined for positive closed currents by M. Blel, S. Mimouni and G. Raby, to psh currents on ${\mathbb{C}}^n$. Thus, we study the growth of the projective mass of positive currents on ${\mathbb{C}}^n$ whose support is contained in a tubular neighborhood of an algebraic subvariety. We also give a sufficient condition guaranteeing that a negative psh current is Liouville. Moreover, we prove that every negative psh algebraic current is Liouville. For the particular case of closed currents, under adequate support conditions, we obtain a structure theorem.
LA - eng
KW - plurisubharmonic currents; Liouville currents; negative psh current; algebraic current; closed currents
UR - http://eudml.org/doc/115872
ER -
References
top- Alessandrini (L.), Bassanelli (G.).— Positive closed currents and non Kähler geometry. J. Geom. Analysis., 2, p. 291-316 (1992). Zbl0735.32008MR1170477
- Ben Messaoud (H.), El Mir (H.).— Opérateur de Monge-Ampère et formule de Tranchage pour un courant positif fermé. CRAS. Paris, t. 321, serie I, p. 277-282 (1995). Zbl0853.32005MR1346126
- Blel (M.), Mimouni (S.K.), Raby (G.).— Courants algébriques et courants de Liouville. Ann. Pol. Math., 86, p. 245-271 (2005). Zbl1095.32005MR2207637
- Bedford (E.), Smillie (J.).— Polynimial diffeomorphisms of : currents, equilibrium measure and hyperbolicity. Inven. Math., 103, p. 69-99 (1991). Zbl0721.58037MR1079840
- Coman (D.), Guedj (V.).— Invariant Currents and Dynamical Lelong Numbers. J. Geom. Analysis., V.14, No.2, p. 199-213 (2004). Zbl1080.37050MR2051683
- Chirka (E.M.).— Complex Analytic sets, Math and Its Applications. Vol. 46. Kluwer Academic Publishers, Dordrecht/Boston/London, (1989). Zbl0683.32002MR1111477
- Dabbek (K.), Elkhadhra (F.), El Mir (H.).— Extension of plurisubharmonic currents. Math. Z., 245, p. 455-481 (2003). Zbl1046.32009MR2021566
- Demailly (J.-P.).— Potential theory in several complex variables. Cours École d’été CIMPA. Nice, juillet (1989).
- Dinh (T.C.), Lawrence (M.).— Polynomial hulls and positive currents. Ann. Fac. Sci. Toulouse., V. 12, No.3, 317-334 (2003). Zbl1065.32004MR2030090
- Dujardin (R.).— Dynamique d’applications non polynomiales et courants laminaires. Thèse d’Université Paris XI, Orsay (2002).
- Duval (J.), Sibony (N.).— Polynomial convexity, rational convexity, and currents. Duke Math. J., 79, No.2, p. 487-513 (1995). Zbl0838.32006MR1344768
- El Mir (H.).— Sur le prolongement des courants positifs fermés. Acta Math., 153, p. 1-45 (1984). Zbl0557.32003MR744998
- Elkhadhra (F.), Mimouni (S.).— Courants positifs à support dans une bande. CRAS., Paris, t.341, serie I, p. 549-554 (2005). Zbl1080.32008MR2181392
- Fornaess (J.E.), Sibony (N.).— Harmonic Currents of finite energy and laminations. GAFA., V. 15, p. 962-1003 (2005). Zbl1115.32020MR2221156
- Garnett (L.).— Foliations, the ergodic theorem and brownian motion. J. Funct. Analysis., 51, p. 285-311 (1983). Zbl0524.58026MR703080
- Gelfand (I. M.), Kapranov (M. M.), Zelevinsky (A. V.).— Discriminants, resultants, and multidimentional determinants. Birkhäuser Boston, Inc., MA, (1994). x+523. Zbl1138.14001
- Giret (S.).— Sur le tranchage et le prolongement de courant. Thèse universitaire, Poitiers (1998).
- Harvey (R.), Lawson (B.J.).— An intrinsic characterization of Kähler manifolds. Inven. Math., 74, p. 169-198 (1983). Zbl0553.32008MR723213
- Lelong (P.).— Fonctions plurisousharmoniques d’ordre fini dans . J. Analyse. Math. Jerusalem., 12, p. 365-407 (1964). Zbl0126.29602MR166391
- Mimouni (S.K.).— Théorème de type Liouville pour les courants positifs fermés. CRAS., t. 331, serie I, p. 611-616 (2000). MR1799098
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.