The polar curve of a foliation on 2

Rogério S. Mol[1]

  • [1] Departamento de Matemática, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 C.P. 702, 30123-970 - Belo Horizonte - MG, BRAZIL

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 849-863
  • ISSN: 0240-2963

Abstract

top
We study some properties of the polar curve P l associated to a singular holomorphic foliation on the complex projective plane 2 . We prove that, for a generic center l 2 , the curve P l is irreducible and its singular points are exactly the singular points of with vanishing linear part. We also obtain upper bounds for the algebraic multiplicities of the singularities of and for its number of radial singularities.

How to cite

top

Mol, Rogério S.. "The polar curve of a foliation on $\mathbb{P}^2$." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 849-863. <http://eudml.org/doc/115886>.

@article{Mol2010,
abstract = {We study some properties of the polar curve $\{\hbox\{$P$\}\}^\{\{\mathcal\{F\}\}\}_\{l\}$ associated to a singular holomorphic foliation $\{\mathcal\{F\}\}$ on the complex projective plane $\{\mathbb\{P\}\}^\{2\}$. We prove that, for a generic center $l \in \{\mathbb\{P\}\}^\{2\}$, the curve $\{\hbox\{$P$\}\}^\{\{\mathcal\{F\}\}\}_\{l\}$ is irreducible and its singular points are exactly the singular points of $\{\mathcal\{F\}\}$ with vanishing linear part. We also obtain upper bounds for the algebraic multiplicities of the singularities of $\{\mathcal\{F\}\}$ and for its number of radial singularities.},
affiliation = {Departamento de Matemática, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 C.P. 702, 30123-970 - Belo Horizonte - MG, BRAZIL},
author = {Mol, Rogério S.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {polar curve; singular holomorphic foliation; radial singularities},
language = {eng},
number = {3-4},
pages = {849-863},
publisher = {Université Paul Sabatier, Toulouse},
title = {The polar curve of a foliation on $\mathbb\{P\}^2$},
url = {http://eudml.org/doc/115886},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Mol, Rogério S.
TI - The polar curve of a foliation on $\mathbb{P}^2$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 849
EP - 863
AB - We study some properties of the polar curve ${\hbox{$P$}}^{{\mathcal{F}}}_{l}$ associated to a singular holomorphic foliation ${\mathcal{F}}$ on the complex projective plane ${\mathbb{P}}^{2}$. We prove that, for a generic center $l \in {\mathbb{P}}^{2}$, the curve ${\hbox{$P$}}^{{\mathcal{F}}}_{l}$ is irreducible and its singular points are exactly the singular points of ${\mathcal{F}}$ with vanishing linear part. We also obtain upper bounds for the algebraic multiplicities of the singularities of ${\mathcal{F}}$ and for its number of radial singularities.
LA - eng
KW - polar curve; singular holomorphic foliation; radial singularities
UR - http://eudml.org/doc/115886
ER -

References

top
  1. Bodin (A.), Débes (P.), and Najib (S.).— Irreducibility of hypersurfaces. Comm. Algebra, 37(6):1884-1900, (2009). Zbl1175.12001MR2530750
  2. Brieskorn (E.) and Knörrer (H.).— Plane algebraic curves. Birkhäuser Verlag, Basel, (1986). Zbl0588.14019MR886476
  3. Camacho (C.), Lins Neto (A.), and Sad (P.).— Topological invariants and equidesingularization for holomorphic vector fields. J. Differential Geom., 20(1):143-174, (1984). Zbl0576.32020MR772129
  4. Campillo (A.) and Olivares (J.).— Polarity with respect to a foliation and Cayley- Bacharach theorems. J. Reine Angew. Math., 534:95-118, (2001). Zbl0991.32021MR1831632
  5. Corral (N.).— Sur la topologie des courbes polaires de certains feuilletages singuliers. Ann. Inst. Fourier (Grenoble), 53(3):787-814, (2003). Zbl1032.32019MR2008441
  6. Corral (N.).— Infinitesimal adjunction and polar curves. Bull. Braz. Math. Soc. (N.S.), 40(2):181-224, (2009). Zbl1186.32008MR2511546
  7. Corral (N.).— Polar pencil of curves and foliations. Astérisque, (323):161-179, (2009). Zbl1207.32026MR2647969
  8. Gómez-Mont (X.), Seade (J.), and Verjovsky (A.).— The index of a holomorphic ow with an isolated singularity. Math. Ann., 291(4):737-751, (1991). Zbl0725.32012MR1135541
  9. Griffiths (P.) and Harris (J.).— Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons Inc., New York, (1994). Zbl0836.14001MR1288523
  10. Mol (R.S.).— Classes polaires associées aux distributions holomorphes de sous-espaces tangents. Bull. Braz. Math. Soc. (N.S.), 37(1):29-48, (2006). Zbl1120.32019MR2223486
  11. Schinzel (A.).— Polynomials with special regard to reducibility, volume 77 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, (2000). Zbl0956.12001MR1770638
  12. Wall (C.T.C.).— Singular points of plane curves, volume 63 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, (2004). Zbl1057.14001MR2107253

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.