The polar curve of a foliation on
- [1] Departamento de Matemática, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 C.P. 702, 30123-970 - Belo Horizonte - MG, BRAZIL
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 849-863
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topMol, Rogério S.. "The polar curve of a foliation on $\mathbb{P}^2$." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 849-863. <http://eudml.org/doc/115886>.
@article{Mol2010,
abstract = {We study some properties of the polar curve $\{\hbox\{$P$\}\}^\{\{\mathcal\{F\}\}\}_\{l\}$ associated to a singular holomorphic foliation $\{\mathcal\{F\}\}$ on the complex projective plane $\{\mathbb\{P\}\}^\{2\}$. We prove that, for a generic center $l \in \{\mathbb\{P\}\}^\{2\}$, the curve $\{\hbox\{$P$\}\}^\{\{\mathcal\{F\}\}\}_\{l\}$ is irreducible and its singular points are exactly the singular points of $\{\mathcal\{F\}\}$ with vanishing linear part. We also obtain upper bounds for the algebraic multiplicities of the singularities of $\{\mathcal\{F\}\}$ and for its number of radial singularities.},
affiliation = {Departamento de Matemática, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 C.P. 702, 30123-970 - Belo Horizonte - MG, BRAZIL},
author = {Mol, Rogério S.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {polar curve; singular holomorphic foliation; radial singularities},
language = {eng},
number = {3-4},
pages = {849-863},
publisher = {Université Paul Sabatier, Toulouse},
title = {The polar curve of a foliation on $\mathbb\{P\}^2$},
url = {http://eudml.org/doc/115886},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Mol, Rogério S.
TI - The polar curve of a foliation on $\mathbb{P}^2$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 849
EP - 863
AB - We study some properties of the polar curve ${\hbox{$P$}}^{{\mathcal{F}}}_{l}$ associated to a singular holomorphic foliation ${\mathcal{F}}$ on the complex projective plane ${\mathbb{P}}^{2}$. We prove that, for a generic center $l \in {\mathbb{P}}^{2}$, the curve ${\hbox{$P$}}^{{\mathcal{F}}}_{l}$ is irreducible and its singular points are exactly the singular points of ${\mathcal{F}}$ with vanishing linear part. We also obtain upper bounds for the algebraic multiplicities of the singularities of ${\mathcal{F}}$ and for its number of radial singularities.
LA - eng
KW - polar curve; singular holomorphic foliation; radial singularities
UR - http://eudml.org/doc/115886
ER -
References
top- Bodin (A.), Débes (P.), and Najib (S.).— Irreducibility of hypersurfaces. Comm. Algebra, 37(6):1884-1900, (2009). Zbl1175.12001MR2530750
- Brieskorn (E.) and Knörrer (H.).— Plane algebraic curves. Birkhäuser Verlag, Basel, (1986). Zbl0588.14019MR886476
- Camacho (C.), Lins Neto (A.), and Sad (P.).— Topological invariants and equidesingularization for holomorphic vector fields. J. Differential Geom., 20(1):143-174, (1984). Zbl0576.32020MR772129
- Campillo (A.) and Olivares (J.).— Polarity with respect to a foliation and Cayley- Bacharach theorems. J. Reine Angew. Math., 534:95-118, (2001). Zbl0991.32021MR1831632
- Corral (N.).— Sur la topologie des courbes polaires de certains feuilletages singuliers. Ann. Inst. Fourier (Grenoble), 53(3):787-814, (2003). Zbl1032.32019MR2008441
- Corral (N.).— Infinitesimal adjunction and polar curves. Bull. Braz. Math. Soc. (N.S.), 40(2):181-224, (2009). Zbl1186.32008MR2511546
- Corral (N.).— Polar pencil of curves and foliations. Astérisque, (323):161-179, (2009). Zbl1207.32026MR2647969
- Gómez-Mont (X.), Seade (J.), and Verjovsky (A.).— The index of a holomorphic ow with an isolated singularity. Math. Ann., 291(4):737-751, (1991). Zbl0725.32012MR1135541
- Griffiths (P.) and Harris (J.).— Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons Inc., New York, (1994). Zbl0836.14001MR1288523
- Mol (R.S.).— Classes polaires associées aux distributions holomorphes de sous-espaces tangents. Bull. Braz. Math. Soc. (N.S.), 37(1):29-48, (2006). Zbl1120.32019MR2223486
- Schinzel (A.).— Polynomials with special regard to reducibility, volume 77 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, (2000). Zbl0956.12001MR1770638
- Wall (C.T.C.).— Singular points of plane curves, volume 63 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, (2004). Zbl1057.14001MR2107253
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.