Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties

Giovanni Gaiffi[1]; Michele Grassi[1]

  • [1] Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo, 5 56125 Pisa - Italy

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 2, page 419-451
  • ISSN: 0240-2963

Abstract

top
We prove that one can obtain natural bundles of Lie algebras on rank two s -Kähler manifolds, whose fibres are isomorphic respectively to so ( s + 1 , s + 1 ) , su ( s + 1 , s + 1 ) and sl ( 2 s + 2 , ) . These bundles have natural flat connections, whose flat global sections generalize the Lefschetz operators of Kähler geometry and act naturally on cohomology. As a first application, we build an irreducible representation of a rational form of su ( s + 1 , s + 1 ) on (rational) Hodge classes of Abelian varieties with rational period matrix.

How to cite

top

Gaiffi, Giovanni, and Grassi, Michele. "Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties." Annales de la faculté des sciences de Toulouse Mathématiques 19.2 (2010): 419-451. <http://eudml.org/doc/115887>.

@article{Gaiffi2010,
abstract = {We prove that one can obtain natural bundles of Lie algebras on rank two $s$-Kähler manifolds, whose fibres are isomorphic respectively to $\mathbf\{so\}(s+1,s+1)$, $\mathbf\{su\}(s+1,s+1)$ and $\mathbf\{sl\}(2s + 2,\mathbb\{R\})$. These bundles have natural flat connections, whose flat global sections generalize the Lefschetz operators of Kähler geometry and act naturally on cohomology. As a first application, we build an irreducible representation of a rational form of $\mathbf\{su\}(s+1,s+1)$ on (rational) Hodge classes of Abelian varieties with rational period matrix.},
affiliation = {Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo, 5 56125 Pisa - Italy; Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo, 5 56125 Pisa - Italy},
author = {Gaiffi, Giovanni, Grassi, Michele},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Lie algebra; Kähler manifold; complex structure; Kähler forms},
language = {eng},
month = {4},
number = {2},
pages = {419-451},
publisher = {Université Paul Sabatier, Toulouse},
title = {Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties},
url = {http://eudml.org/doc/115887},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Gaiffi, Giovanni
AU - Grassi, Michele
TI - Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/4//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 2
SP - 419
EP - 451
AB - We prove that one can obtain natural bundles of Lie algebras on rank two $s$-Kähler manifolds, whose fibres are isomorphic respectively to $\mathbf{so}(s+1,s+1)$, $\mathbf{su}(s+1,s+1)$ and $\mathbf{sl}(2s + 2,\mathbb{R})$. These bundles have natural flat connections, whose flat global sections generalize the Lefschetz operators of Kähler geometry and act naturally on cohomology. As a first application, we build an irreducible representation of a rational form of $\mathbf{su}(s+1,s+1)$ on (rational) Hodge classes of Abelian varieties with rational period matrix.
LA - eng
KW - Lie algebra; Kähler manifold; complex structure; Kähler forms
UR - http://eudml.org/doc/115887
ER -

References

top
  1. U. Bruzzo, G. Marelli, F. Pioli A Fourier transform for sheaves on real tori Part II. Relative theory J. of Geometry and Phy. 41 (2002) 312-329 Zbl1071.14515MR1888468
  2. P. Candelas, X.C. De la Ossa, P.S. Green, L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B359 (1991), p 21-74 Zbl1098.32506MR1115626
  3. R. Donagi, B.A. Ovrut, T. Pantev, D. Waldram Standard-model bundles, Adv. Ther. Math. Phys. 5 (2001) n.3, p. 563-615 Zbl1027.14005MR1898371
  4. G. Gaiffi, M. Grassi A geometric realization of sl ( 6 , ) , arXiv:0704.0104v1, to appear on Rend. Sem. Mat. Univ. Padova. Zbl1210.53085MR2542137
  5. G. Gaiffi, M. Grassi A natural Lie superalgebra bundle on rank three WSD manifolds, J. Geom. Phys. 59 (2009), p. 207-220 Zbl1158.81023MR2492191
  6. M. Grassi, Polysymplectic spaces, s -Kähler manifolds and lagrangian fibrations, math.DG/0006154 (2000) 
  7. M. Grassi, Mirror symmetry and self-dual manifolds, math.DG/0202016 (2002) 
  8. M. Grassi, Self-dual manifolds and mirror symmetry for the quintic threefold, Asian J. Math 9 (2005) 79-102 Zbl1085.14035MR2150693
  9. P. Griffiths, J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, New York (1978) Zbl0408.14001MR507725
  10. M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser P.M. 152, Boston 1999 Zbl0953.53002MR1699320
  11. V. Guillemin, Moment maps and combinatorial invariants of Hamiltonian 𝕋 n -spaces, Birkhäuser P.M. 122 (1994) Zbl0828.58001MR1301331
  12. T. Hausel, M. Thaddeus Mirror symmetry, Langlands duality, and the Hitchin system Invent. Math. 153 (2003), n.1 197-229 Zbl1043.14011MR1990670
  13. H.B. Lawson, M-L. Michelsohn, Spin Geometry, Princeton M.S. 38 (1989) Zbl0688.57001
  14. A. McInroy, Orbifold mirror symmetry for complex tori, preprint MR2622534
  15. M. Kontsevich, Y. Soibelman, Homological mirror symmetry and torus fibrations, math.SG/0011041 (2001) Zbl1072.14046MR1882331
  16. A. Strominger, S.T. Yau, E. Zaslow, Mirror Symmetry is T-Duality, Nucl. Phys. B479 (1996) 243-259; hep-th/9606040 Zbl0896.14024MR1429831
  17. M.S. Verbitsky, Action of the Lie algebra of SO ( 5 ) on the cohomology of a hyper-Kähler manifold, (Russian) Funktsional. Anal. i Prilozhen. 24 (1990), no. 3, 70–71; translation in Funct. Anal. Appl. 24 (1990), no. 3, 229–230 (1991) Zbl0717.53041MR1082036
  18. M.S. Verbitsky, Hyperholomorphic bundles over a hyper-Kähler manifold J. Algebraic Geom. 5 (1996), no. 4, 633–669 Zbl0865.32006MR1486984

NotesEmbed ?

top

You must be logged in to post comments.