Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties

Giovanni Gaiffi[1]; Michele Grassi[1]

  • [1] Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo, 5 56125 Pisa - Italy

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 2, page 419-451
  • ISSN: 0240-2963

Abstract

top
We prove that one can obtain natural bundles of Lie algebras on rank two s -Kähler manifolds, whose fibres are isomorphic respectively to so ( s + 1 , s + 1 ) , su ( s + 1 , s + 1 ) and sl ( 2 s + 2 , ) . These bundles have natural flat connections, whose flat global sections generalize the Lefschetz operators of Kähler geometry and act naturally on cohomology. As a first application, we build an irreducible representation of a rational form of su ( s + 1 , s + 1 ) on (rational) Hodge classes of Abelian varieties with rational period matrix.

How to cite

top

Gaiffi, Giovanni, and Grassi, Michele. "Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties." Annales de la faculté des sciences de Toulouse Mathématiques 19.2 (2010): 419-451. <http://eudml.org/doc/115887>.

@article{Gaiffi2010,
abstract = {We prove that one can obtain natural bundles of Lie algebras on rank two $s$-Kähler manifolds, whose fibres are isomorphic respectively to $\mathbf\{so\}(s+1,s+1)$, $\mathbf\{su\}(s+1,s+1)$ and $\mathbf\{sl\}(2s + 2,\mathbb\{R\})$. These bundles have natural flat connections, whose flat global sections generalize the Lefschetz operators of Kähler geometry and act naturally on cohomology. As a first application, we build an irreducible representation of a rational form of $\mathbf\{su\}(s+1,s+1)$ on (rational) Hodge classes of Abelian varieties with rational period matrix.},
affiliation = {Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo, 5 56125 Pisa - Italy; Dipartimento di Matematica, Università di Pisa Largo B. Pontecorvo, 5 56125 Pisa - Italy},
author = {Gaiffi, Giovanni, Grassi, Michele},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Lie algebra; Kähler manifold; complex structure; Kähler forms},
language = {eng},
month = {4},
number = {2},
pages = {419-451},
publisher = {Université Paul Sabatier, Toulouse},
title = {Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties},
url = {http://eudml.org/doc/115887},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Gaiffi, Giovanni
AU - Grassi, Michele
TI - Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/4//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 2
SP - 419
EP - 451
AB - We prove that one can obtain natural bundles of Lie algebras on rank two $s$-Kähler manifolds, whose fibres are isomorphic respectively to $\mathbf{so}(s+1,s+1)$, $\mathbf{su}(s+1,s+1)$ and $\mathbf{sl}(2s + 2,\mathbb{R})$. These bundles have natural flat connections, whose flat global sections generalize the Lefschetz operators of Kähler geometry and act naturally on cohomology. As a first application, we build an irreducible representation of a rational form of $\mathbf{su}(s+1,s+1)$ on (rational) Hodge classes of Abelian varieties with rational period matrix.
LA - eng
KW - Lie algebra; Kähler manifold; complex structure; Kähler forms
UR - http://eudml.org/doc/115887
ER -

References

top
  1. U. Bruzzo, G. Marelli, F. Pioli A Fourier transform for sheaves on real tori Part II. Relative theory J. of Geometry and Phy. 41 (2002) 312-329 Zbl1071.14515MR1888468
  2. P. Candelas, X.C. De la Ossa, P.S. Green, L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B359 (1991), p 21-74 Zbl1098.32506MR1115626
  3. R. Donagi, B.A. Ovrut, T. Pantev, D. Waldram Standard-model bundles, Adv. Ther. Math. Phys. 5 (2001) n.3, p. 563-615 Zbl1027.14005MR1898371
  4. G. Gaiffi, M. Grassi A geometric realization of sl ( 6 , ) , arXiv:0704.0104v1, to appear on Rend. Sem. Mat. Univ. Padova. Zbl1210.53085MR2542137
  5. G. Gaiffi, M. Grassi A natural Lie superalgebra bundle on rank three WSD manifolds, J. Geom. Phys. 59 (2009), p. 207-220 Zbl1158.81023MR2492191
  6. M. Grassi, Polysymplectic spaces, s -Kähler manifolds and lagrangian fibrations, math.DG/0006154 (2000) 
  7. M. Grassi, Mirror symmetry and self-dual manifolds, math.DG/0202016 (2002) 
  8. M. Grassi, Self-dual manifolds and mirror symmetry for the quintic threefold, Asian J. Math 9 (2005) 79-102 Zbl1085.14035MR2150693
  9. P. Griffiths, J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, New York (1978) Zbl0408.14001MR507725
  10. M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser P.M. 152, Boston 1999 Zbl0953.53002MR1699320
  11. V. Guillemin, Moment maps and combinatorial invariants of Hamiltonian 𝕋 n -spaces, Birkhäuser P.M. 122 (1994) Zbl0828.58001MR1301331
  12. T. Hausel, M. Thaddeus Mirror symmetry, Langlands duality, and the Hitchin system Invent. Math. 153 (2003), n.1 197-229 Zbl1043.14011MR1990670
  13. H.B. Lawson, M-L. Michelsohn, Spin Geometry, Princeton M.S. 38 (1989) Zbl0688.57001
  14. A. McInroy, Orbifold mirror symmetry for complex tori, preprint MR2622534
  15. M. Kontsevich, Y. Soibelman, Homological mirror symmetry and torus fibrations, math.SG/0011041 (2001) Zbl1072.14046MR1882331
  16. A. Strominger, S.T. Yau, E. Zaslow, Mirror Symmetry is T-Duality, Nucl. Phys. B479 (1996) 243-259; hep-th/9606040 Zbl0896.14024MR1429831
  17. M.S. Verbitsky, Action of the Lie algebra of SO ( 5 ) on the cohomology of a hyper-Kähler manifold, (Russian) Funktsional. Anal. i Prilozhen. 24 (1990), no. 3, 70–71; translation in Funct. Anal. Appl. 24 (1990), no. 3, 229–230 (1991) Zbl0717.53041MR1082036
  18. M.S. Verbitsky, Hyperholomorphic bundles over a hyper-Kähler manifold J. Algebraic Geom. 5 (1996), no. 4, 633–669 Zbl0865.32006MR1486984

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.