Invariant Spin Structures on Riemann Surfaces
Sadok Kallel[1]; Denis Sjerve[2]
- [1] Laboratoire Painlevé, Université de Lille I, France
- [2] Department of Mathematics, University of British Columbia,Canada
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 457-477
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topKallel, Sadok, and Sjerve, Denis. "Invariant Spin Structures on Riemann Surfaces." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 457-477. <http://eudml.org/doc/115891>.
@article{Kallel2010,
abstract = {We investigate the action of the automorphism group of a closed Riemann surface of genus at least two on its set of theta characteristics (or spin structures). We give a characterization of those surfaces admitting a non-trivial automorphism fixing either all of the spin structures or just one. The case of hyperelliptic curves and of the Klein quartic are discussed in detail.},
affiliation = {Laboratoire Painlevé, Université de Lille I, France; Department of Mathematics, University of British Columbia,Canada},
author = {Kallel, Sadok, Sjerve, Denis},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {3-4},
pages = {457-477},
publisher = {Université Paul Sabatier, Toulouse},
title = {Invariant Spin Structures on Riemann Surfaces},
url = {http://eudml.org/doc/115891},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Kallel, Sadok
AU - Sjerve, Denis
TI - Invariant Spin Structures on Riemann Surfaces
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 457
EP - 477
AB - We investigate the action of the automorphism group of a closed Riemann surface of genus at least two on its set of theta characteristics (or spin structures). We give a characterization of those surfaces admitting a non-trivial automorphism fixing either all of the spin structures or just one. The case of hyperelliptic curves and of the Klein quartic are discussed in detail.
LA - eng
UR - http://eudml.org/doc/115891
ER -
References
top- Adler (A.), Ramanan (S.).— Moduli of abelian varieties, Lecture Notes in Mathematics, 1644. Springer (1996). Zbl0863.14024MR1621185
- Aigon (A.).— Transformations Hyperboliques et Courbes Algébriques en genre 2 et 3, Thèse 2001, Université de Montpellier II. http://tel.archives-ouvertes.fr/docs/00/04/47/84/PDF/tel-00001154.pdf
- Arbarello (E.), Cornalba (M.), Griffiths (P.), Harris (J.).— Geometry of algebraic curves I, Spinger Grundlehren 267. Zbl0559.14017
- Atiyah (M.F.).— Riemann surfaces and spin structures, Ann. scient. École. Norm. Sup.(4), p. 47-62 (1971). Zbl0212.56402MR286136
- Bavard (C.).— La surface de Klein, le journal de maths des élèves de ENS-Lyon (http://www.ens-lyon.fr/JME/), vol.1, p. 13-22 (1993).
- Dolgachev (I.).— Topics in classical algebraic geometry, part I, April 20 (2006).
- Dolgachev (I.).— Invariant stable bundles over modular curves , Recent progress in algebra (Taejon/Seoul, 1997), p. 65-99, Contemp. Math., 224, Amer. Math. Soc., Providence, RI (1999). Zbl0977.14012MR1653063
- Farkas (H.), Kra (I.).— Riemann Surfaces, Springer Graduate Texts in Math 71, 2nd Edition (1992). Zbl0764.30001MR1139765
- Johnson (D.).— Spin structures and quadratic forms on surfaces, J. London Math. Soc. (2) 22, no. 2, p. 365-373 (1980). Zbl0454.57011MR588283
- Masbaum (G.).— On representations of spin mapping class groups arising in spin TQFT, Geometry and physics (Aarhus, 1995), p. 197-207, Lecture Notes in Pure and Appl. Math., 184, Dekker, New York, (1997). Zbl0873.57011MR1423166
- Mukai (S.).— Plane quartics and Fano threefolds of genus twelve, The Fano Conference, p. 563-572, Univ. Torino, Turin, 2004. Zbl1068.14050MR2112592
- Mumford (D.).— Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971), p. 181-192. Zbl0216.05904MR292836
- Nielsen J..— Die Structur periodischer Transformation von Flächen, Danske Vid. Selsk., Mat.-Fys.Medd 15 (1937), p. 1-77. Zbl0017.13302
- Rauch (H.E.),Lewittes (J.).— The Riemann Surface of Klein with Automorphisms, Problems in analysis (papers dedicated to Solomom Bochner, 1969), 297-308. Princeton Univ. Press, Princeton, N.J., 1970 Zbl0219.30007MR346150
- Sipe (P.L.).— Roots of the canonical bundle of the universal Teichmüller curve and certain subgroups of the mapping class group, Math. Ann. 260 (1982), no. 1, p. 67-92. Zbl0502.32017MR664367
- Sjerve (D.).— Canonical Forms for Torsion Matrices, J. of Pure and Algebra 22 (1981) p. 103-111. Zbl0465.20040MR621290
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.