Invariant Spin Structures on Riemann Surfaces

Sadok Kallel[1]; Denis Sjerve[2]

  • [1] Laboratoire Painlevé, Université de Lille I, France
  • [2] Department of Mathematics, University of British Columbia,Canada

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 457-477
  • ISSN: 0240-2963

Abstract

top
We investigate the action of the automorphism group of a closed Riemann surface of genus at least two on its set of theta characteristics (or spin structures). We give a characterization of those surfaces admitting a non-trivial automorphism fixing either all of the spin structures or just one. The case of hyperelliptic curves and of the Klein quartic are discussed in detail.

How to cite

top

Kallel, Sadok, and Sjerve, Denis. "Invariant Spin Structures on Riemann Surfaces." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 457-477. <http://eudml.org/doc/115891>.

@article{Kallel2010,
abstract = {We investigate the action of the automorphism group of a closed Riemann surface of genus at least two on its set of theta characteristics (or spin structures). We give a characterization of those surfaces admitting a non-trivial automorphism fixing either all of the spin structures or just one. The case of hyperelliptic curves and of the Klein quartic are discussed in detail.},
affiliation = {Laboratoire Painlevé, Université de Lille I, France; Department of Mathematics, University of British Columbia,Canada},
author = {Kallel, Sadok, Sjerve, Denis},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {3-4},
pages = {457-477},
publisher = {Université Paul Sabatier, Toulouse},
title = {Invariant Spin Structures on Riemann Surfaces},
url = {http://eudml.org/doc/115891},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Kallel, Sadok
AU - Sjerve, Denis
TI - Invariant Spin Structures on Riemann Surfaces
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 457
EP - 477
AB - We investigate the action of the automorphism group of a closed Riemann surface of genus at least two on its set of theta characteristics (or spin structures). We give a characterization of those surfaces admitting a non-trivial automorphism fixing either all of the spin structures or just one. The case of hyperelliptic curves and of the Klein quartic are discussed in detail.
LA - eng
UR - http://eudml.org/doc/115891
ER -

References

top
  1. Adler (A.), Ramanan (S.).— Moduli of abelian varieties, Lecture Notes in Mathematics, 1644. Springer (1996). Zbl0863.14024MR1621185
  2. Aigon (A.).— Transformations Hyperboliques et Courbes Algébriques en genre 2 et 3, Thèse 2001, Université de Montpellier II. http://tel.archives-ouvertes.fr/docs/00/04/47/84/PDF/tel-00001154.pdf 
  3. Arbarello (E.), Cornalba (M.), Griffiths (P.), Harris (J.).— Geometry of algebraic curves I, Spinger Grundlehren 267. Zbl0559.14017
  4. Atiyah (M.F.).— Riemann surfaces and spin structures, Ann. scient. École. Norm. Sup.(4), p. 47-62 (1971). Zbl0212.56402MR286136
  5. Bavard (C.).— La surface de Klein, le journal de maths des élèves de ENS-Lyon (http://www.ens-lyon.fr/JME/), vol.1, p. 13-22 (1993). 
  6. Dolgachev (I.).— Topics in classical algebraic geometry, part I, April 20 (2006). 
  7. Dolgachev (I.).— Invariant stable bundles over modular curves X ( p ) , Recent progress in algebra (Taejon/Seoul, 1997), p. 65-99, Contemp. Math., 224, Amer. Math. Soc., Providence, RI (1999). Zbl0977.14012MR1653063
  8. Farkas (H.), Kra (I.).— Riemann Surfaces, Springer Graduate Texts in Math 71, 2nd Edition (1992). Zbl0764.30001MR1139765
  9. Johnson (D.).— Spin structures and quadratic forms on surfaces, J. London Math. Soc. (2) 22, no. 2, p. 365-373 (1980). Zbl0454.57011MR588283
  10. Masbaum (G.).— On representations of spin mapping class groups arising in spin TQFT, Geometry and physics (Aarhus, 1995), p. 197-207, Lecture Notes in Pure and Appl. Math., 184, Dekker, New York, (1997). Zbl0873.57011MR1423166
  11. Mukai (S.).— Plane quartics and Fano threefolds of genus twelve, The Fano Conference, p. 563-572, Univ. Torino, Turin, 2004. Zbl1068.14050MR2112592
  12. Mumford (D.).— Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971), p. 181-192. Zbl0216.05904MR292836
  13. Nielsen J..— Die Structur periodischer Transformation von Flächen, Danske Vid. Selsk., Mat.-Fys.Medd 15 (1937), p. 1-77. Zbl0017.13302
  14. Rauch (H.E.),Lewittes (J.).— The Riemann Surface of Klein with 168 Automorphisms, Problems in analysis (papers dedicated to Solomom Bochner, 1969), 297-308. Princeton Univ. Press, Princeton, N.J., 1970 Zbl0219.30007MR346150
  15. Sipe (P.L.).— Roots of the canonical bundle of the universal Teichmüller curve and certain subgroups of the mapping class group, Math. Ann. 260 (1982), no. 1, p. 67-92. Zbl0502.32017MR664367
  16. Sjerve (D.).— Canonical Forms for Torsion Matrices, J. of Pure and Algebra 22 (1981) p. 103-111. Zbl0465.20040MR621290

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.