# A Survey of Rings Generated by Units

Ashish K. Srivastava^{[1]}

- [1] Department of Mathematics and Computer Science, St. Louis University, St. Louis, MO-63103, USA

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

- Volume: 19, Issue: S1, page 203-213
- ISSN: 0240-2963

## Access Full Article

top## Abstract

top## How to cite

topSrivastava, Ashish K.. "A Survey of Rings Generated by Units." Annales de la faculté des sciences de Toulouse Mathématiques 19.S1 (2010): 203-213. <http://eudml.org/doc/115897>.

@article{Srivastava2010,

abstract = {This article presents a brief survey of the work done on rings generated by their units.},

affiliation = {Department of Mathematics and Computer Science, St. Louis University, St. Louis, MO-63103, USA},

author = {Srivastava, Ashish K.},

journal = {Annales de la faculté des sciences de Toulouse Mathématiques},

keywords = {rings generated by units; sums of units; endomorphisms; von Neumann regular rings; right self-injective rings; injective modules; unit sum numbers; regular elements},

language = {eng},

month = {4},

number = {S1},

pages = {203-213},

publisher = {Université Paul Sabatier, Toulouse},

title = {A Survey of Rings Generated by Units},

url = {http://eudml.org/doc/115897},

volume = {19},

year = {2010},

}

TY - JOUR

AU - Srivastava, Ashish K.

TI - A Survey of Rings Generated by Units

JO - Annales de la faculté des sciences de Toulouse Mathématiques

DA - 2010/4//

PB - Université Paul Sabatier, Toulouse

VL - 19

IS - S1

SP - 203

EP - 213

AB - This article presents a brief survey of the work done on rings generated by their units.

LA - eng

KW - rings generated by units; sums of units; endomorphisms; von Neumann regular rings; right self-injective rings; injective modules; unit sum numbers; regular elements

UR - http://eudml.org/doc/115897

ER -

## References

top- N. Ashrafi, P. Vámos, On the unit sum number of some rings, Quart. J. Math. 56 (2005), 1-12. Zbl1100.11036MR2124574
- V. P. Camillo, H. P. Yu, Exchange rings, units and idempotents, Comm. Alg. 22, 12 (1994), 4737-4749. Zbl0811.16002MR1285703
- A. W. Chatters, S. M. Ginn, Rings generated by their regular elements, Glasgow Math. J. 25 (1984), 1-5. Zbl0531.16007MR731473
- H. Chen, Exchange rings with artinian primitive factors, Algebras and Representation Theory, Vol. 2, No. 2 (1999), 201-207. Zbl0960.16009MR1702275
- G. Ehrlich, Unit-regular rings, Portugal Math. 27 (1968), 209-212. Zbl0201.03901MR266962
- J. W. Fisher, R. L. Snider, Rings generated by their units, J. Algebra 42 (1976), 363-368. Zbl0335.16014MR419510
- K. R. Goodearl, von-Neumann Regular Rings, Krieger Publishing Company, Malabar, Florida, 1991. Zbl0749.16001MR1150975
- B. Goldsmith, S. Pabst and A. Scott, Unit sum numbers of rings and modules, Quart. J. Math. Oxford (2), 49 (1998), 331-344. Zbl0933.16035MR1645560
- D. Handelman, Perspectivity and cancellation in regular rings, J. Algebra, 48 (1977), 1-16. Zbl0363.16009MR447329
- M. Henriksen, On a class of regular rings that are elementary divisor rings. Arch. Math. (Basel) 24 (1973), 133Ð141. Zbl0257.16015MR379574
- M. Henriksen, Two classes of rings generated by their units, J. Algebra 31 (1974), 182-193. Zbl0285.16009MR349745
- D. Khurana and A. K. Srivastava, Right Self-injective Rings in Which Each Element is Sum of Two Units, Journal of Algebra and its Applications, Vol. 6, No. 2 (2007), 281-286. Zbl1116.16033MR2316422
- D. Khurana and A. K. Srivastava, Unit Sum Numbers of Right Self-injective Rings, Bulletin of Australian Math. Soc., Vol. 75, No. 3 (2007), 355-360. Zbl1119.16029MR2331013
- S. Lang, Algebraic Number Theory, Graduate Texts in Mathematics, Springer, 1986. Zbl0601.12001MR1282723
- T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, Springer, 1990. Zbl0728.16001MR1838439
- T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, Springer, 1998. Zbl0911.16001MR1653294
- C. Meehan, Unit sum numbers of abelian groups and modules, Ph.D. thesis, Dublin Institute of Technology, 2001.
- R. Raphael, Rings which are generated by their units, J. Algebra 28 (1974), 199-205. Zbl0271.16013MR342554
- J. C. Robson, Sums of two regular elements, Glasgow Math. J. 25 (1984), 7-11. Zbl0531.16008MR731474
- L. A. Skornyakov, Complemented Modular Lattices and Regular Rings, Oliver & Boyd, Edinburgh, 1964. Zbl0156.04101MR169799
- Y. Utumi, On Continuous Regular Rings and Semisimple Self-injective Rings, Canad. J. Math. 12 (1960), 597-605. Zbl0100.26303MR117250
- P. Vámos, 2-Good Rings, The Quart. J. Math. 56 (2005), 417-430. Zbl1156.16303MR2161255
- Z. Wang, J. L. Chen, To appear in the Canad. Math. Bull. MR2494320
- K. G. Wolfson, An ideal theoretic characterization of the ring of all linear transformations, Amer. J. Math. 75 (1953), 358-386. Zbl0050.11503MR53080
- D. Zelinsky, Every Linear Transformation is Sum of Nonsingular Ones, Proc. Amer. Math. Soc. 5 (1954), 627-630. Zbl0056.11002MR62728

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.