Degeneration of Schubert varieties of S L n / B to toric varieties

Raika Dehy[1]; Rupert W.T. Yu[2]

  • [1] Université de Cergy-Pontoise, Département de Mathématiques, 2 avenue Adolphe Chauvin, 95032 Cergy Cedex (France)
  • [2] Université de Poitiers, Département de Mathématiques, Boulevard Marie et Pierre Curie, Téléport 2, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 6, page 1525-1538
  • ISSN: 0373-0956

Abstract

top
Using the polytopes defined in an earlier paper, we show in this paper the existence of degeneration of a large class of Schubert varieties of S L n to toric varieties by extending the method used by Gonciulea and Lakshmibai for a miniscule G / P to Schubert varieties in S L n .

How to cite

top

Dehy, Raika, and Yu, Rupert W.T.. "Degeneration of Schubert varieties of $SL_n/B$ to toric varieties." Annales de l’institut Fourier 51.6 (2001): 1525-1538. <http://eudml.org/doc/115957>.

@article{Dehy2001,
abstract = {Using the polytopes defined in an earlier paper, we show in this paper the existence of degeneration of a large class of Schubert varieties of $SL_\{n\}$ to toric varieties by extending the method used by Gonciulea and Lakshmibai for a miniscule $G/P$ to Schubert varieties in $SL_\{n\}$.},
affiliation = {Université de Cergy-Pontoise, Département de Mathématiques, 2 avenue Adolphe Chauvin, 95032 Cergy Cedex (France); Université de Poitiers, Département de Mathématiques, Boulevard Marie et Pierre Curie, Téléport 2, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France)},
author = {Dehy, Raika, Yu, Rupert W.T.},
journal = {Annales de l’institut Fourier},
keywords = {Schubert varieties; toric varieties; flat deformations; distributive lattice; standard monomial basis},
language = {eng},
number = {6},
pages = {1525-1538},
publisher = {Association des Annales de l'Institut Fourier},
title = {Degeneration of Schubert varieties of $SL_n/B$ to toric varieties},
url = {http://eudml.org/doc/115957},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Dehy, Raika
AU - Yu, Rupert W.T.
TI - Degeneration of Schubert varieties of $SL_n/B$ to toric varieties
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 6
SP - 1525
EP - 1538
AB - Using the polytopes defined in an earlier paper, we show in this paper the existence of degeneration of a large class of Schubert varieties of $SL_{n}$ to toric varieties by extending the method used by Gonciulea and Lakshmibai for a miniscule $G/P$ to Schubert varieties in $SL_{n}$.
LA - eng
KW - Schubert varieties; toric varieties; flat deformations; distributive lattice; standard monomial basis
UR - http://eudml.org/doc/115957
ER -

References

top
  1. C. de Concini, D. Eisenbud, C. Procesi, Hodge algebras, Astérisque 91 (1982) Zbl0509.13026MR680936
  2. R. Dehy, Polytopes associated to Demazure modules of Symmetrizable Kac-Moody algebras of rank two, Journal of Algebra 228 (2000), 60-90 Zbl0973.17033MR1760956
  3. R. Dehy, R.W.T. Yu, Polytopes associated to certain Demazure modules of 𝔰 l ( n ) , Journal of Algebraic Combinatorics 10 (1999), 149-172 Zbl0966.17004MR1719132
  4. D. Eisenbud, B. Sturmfels, Binomial ideals, Duke Math. J. 84 (1996), 1-45 Zbl0873.13021MR1394747
  5. N. Gonciulea, V. Lakshmibai, Degenerations of flag and Schubert varieties to toric varieties, Transformation Groups 2 (1996), 215-249 Zbl0909.14028MR1417711
  6. T. Hibi, Distributive lattices, affine semigroup rings, and algebras with straightening laws, Commutative algebra and combinatorics 11 (1987), 93-109 Zbl0654.13015
  7. C. Huneke, V. Lakshmibai, Degeneracy of Schubert varieties., Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989) 139 (1992), 181-235, Amer. Math. Soc., Providence, RI Zbl0806.14036
  8. G. Kempf, A. Ramanthan, Multicones over Schubert Varieties, Invent. Math. 87 (1987), 353-363 Zbl0615.14028MR870733
  9. V. Lakshmibai, C. Musili, C. S. Seshadri, Geometry of G / P . IV. Standard monomial theory for classical types, Proc. Indian Acad. Sci., Sect. A Math. Sci 88 (1979), 279-362 Zbl0447.14013MR553746
  10. V. Lakshmibai, C. S. Seshadri, Geometry of G / P . V, J. Algebra 100 (1986), 462-557 Zbl0618.14026MR840589
  11. B. Teissier, Variétés toriques et polytopes, Séminaire Bourbaki 901, exposé 565 (1981), 71-84, Springer-Verlag, New York Zbl0494.52010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.