A nonlinearizable action of on
Gene Freudenburg[1]; Lucy Moser-Jauslin[2]
- [1] University of Southern Indiana, Department of Mathematics, Evansville IN 47712 (USA)
- [2] Université de Bourgogne, Laboratoire de Topologie, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 1, page 133-143
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFreudenburg, Gene, and Moser-Jauslin, Lucy. "A nonlinearizable action of $S_3$ on ${\mathbb {C}}^4$." Annales de l’institut Fourier 52.1 (2002): 133-143. <http://eudml.org/doc/115969>.
@article{Freudenburg2002,
abstract = {The main purpose of this article is to give an explicit algebraic action of the group
$S_3$ of permutations of 3 elements on affine four-dimensional complex space which is not
conjugate to a linear action.},
affiliation = {University of Southern Indiana, Department of Mathematics, Evansville IN 47712 (USA); Université de Bourgogne, Laboratoire de Topologie, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)},
author = {Freudenburg, Gene, Moser-Jauslin, Lucy},
journal = {Annales de l’institut Fourier},
keywords = {nonlinearizable actions; equivariant vector bundles; invariants; linearization problem; group actions},
language = {eng},
number = {1},
pages = {133-143},
publisher = {Association des Annales de l'Institut Fourier},
title = {A nonlinearizable action of $S_3$ on $\{\mathbb \{C\}\}^4$},
url = {http://eudml.org/doc/115969},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Freudenburg, Gene
AU - Moser-Jauslin, Lucy
TI - A nonlinearizable action of $S_3$ on ${\mathbb {C}}^4$
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 1
SP - 133
EP - 143
AB - The main purpose of this article is to give an explicit algebraic action of the group
$S_3$ of permutations of 3 elements on affine four-dimensional complex space which is not
conjugate to a linear action.
LA - eng
KW - nonlinearizable actions; equivariant vector bundles; invariants; linearization problem; group actions
UR - http://eudml.org/doc/115969
ER -
References
top- T. Asanuma, Non-linearizable algebraic -actions on affine spaces, Invent. Math. 138 (1999), 281-306 Zbl0933.14027MR1720185
- H. Bass, W. Haboush, Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1985), 463-482 Zbl0602.14047MR808732
- H. Bass, W. Haboush, Some equivariant -theory of affine algebraic group actions, Comm. Algebra 15 (1987), 181-217 Zbl0612.14047MR876977
- H. Derksen, F. Kutzschebauch, Non-linearizable holomorphic group actions, Math. Annalen 311 (1998), 41-53 Zbl0911.32042MR1624259
- P. Heinzner, F. Kutzschebauch, Le principe d'Oka équivariant, C.R. Acad. Sci. Paris, Série I 315 (1992), 217-220 Zbl0782.32021MR1194532
- H.P. Kraft, Algebraic automorphisms of affine space, Topological Methods in Algebraic Transformation Groups, Proceedings of a Conference at Rutgers Vol. 80 (1989), 81-106, Birkhäuser Zbl0719.14030
- H.P. Kraft, G-vector bundles and the linearization problem, Group Actions and Invariant Theory, Proceeding of the 1988 Montreal Conference Vol. 10 (1988), 111-124, CMS Conference Proceedings Zbl0703.14009
- H.P. Kraft, G. Schwarz, Reductive group actions with one dimensional quotient, Publ. Math. IHES 76 (1992), 1-97 Zbl0783.14026MR1215592
- M. Masuda, T. Petrie, Stably trivial equivariant algebraic vector bundles, J. Amer. Math. Soc. 8 (1995), 687-714 Zbl0862.14009MR1303027
- M. Masuda, L. Moser-Jauslin, T. Petrie, Equivariant algebraic vector bundles over cones with smooth one dimensional quotient, J. Math. Soc. Japan 50 (1998), 379-414 Zbl0928.14013MR1613156
- M. Masuda, L. Moser-Jauslin, T. Petrie, The equivariant Serre problem for abelian groups, Topology 35 (1996), 329-334 Zbl0884.14007MR1380501
- K. Mederer, Moduli of -equivariant vector bundles, (1995)
- L. Moser-Jauslin, Triviality of certain equivariant vector bundles for finite cyclic groups, C.R. Acad. Sci. Paris 317 (1993), 139-144 Zbl0813.14033MR1231410
- D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171 Zbl0337.13011MR427303
- G. Schwarz, Exotic algebraic group actions, C.R. Acad. Sci. Paris 309 (1989), 89-94 Zbl0688.14040MR1004947
- A. Suslin, Projective modules over a polynomial ring, Soviet Doklady 17 (1976), 1160-1164 Zbl0354.13010
- A. Suslin, Projective modules over a polynomial ring, Dokl. Acad. Nauk. SSSR 26 (1976) Zbl0354.13010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.