A nonlinearizable action of S 3 on 4

Gene Freudenburg[1]; Lucy Moser-Jauslin[2]

  • [1] University of Southern Indiana, Department of Mathematics, Evansville IN 47712 (USA)
  • [2] Université de Bourgogne, Laboratoire de Topologie, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 1, page 133-143
  • ISSN: 0373-0956

Abstract

top
The main purpose of this article is to give an explicit algebraic action of the group S 3 of permutations of 3 elements on affine four-dimensional complex space which is not conjugate to a linear action.

How to cite

top

Freudenburg, Gene, and Moser-Jauslin, Lucy. "A nonlinearizable action of $S_3$ on ${\mathbb {C}}^4$." Annales de l’institut Fourier 52.1 (2002): 133-143. <http://eudml.org/doc/115969>.

@article{Freudenburg2002,
abstract = {The main purpose of this article is to give an explicit algebraic action of the group $S_3$ of permutations of 3 elements on affine four-dimensional complex space which is not conjugate to a linear action.},
affiliation = {University of Southern Indiana, Department of Mathematics, Evansville IN 47712 (USA); Université de Bourgogne, Laboratoire de Topologie, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)},
author = {Freudenburg, Gene, Moser-Jauslin, Lucy},
journal = {Annales de l’institut Fourier},
keywords = {nonlinearizable actions; equivariant vector bundles; invariants; linearization problem; group actions},
language = {eng},
number = {1},
pages = {133-143},
publisher = {Association des Annales de l'Institut Fourier},
title = {A nonlinearizable action of $S_3$ on $\{\mathbb \{C\}\}^4$},
url = {http://eudml.org/doc/115969},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Freudenburg, Gene
AU - Moser-Jauslin, Lucy
TI - A nonlinearizable action of $S_3$ on ${\mathbb {C}}^4$
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 1
SP - 133
EP - 143
AB - The main purpose of this article is to give an explicit algebraic action of the group $S_3$ of permutations of 3 elements on affine four-dimensional complex space which is not conjugate to a linear action.
LA - eng
KW - nonlinearizable actions; equivariant vector bundles; invariants; linearization problem; group actions
UR - http://eudml.org/doc/115969
ER -

References

top
  1. T. Asanuma, Non-linearizable algebraic k * -actions on affine spaces, Invent. Math. 138 (1999), 281-306 Zbl0933.14027MR1720185
  2. H. Bass, W. Haboush, Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1985), 463-482 Zbl0602.14047MR808732
  3. H. Bass, W. Haboush, Some equivariant K -theory of affine algebraic group actions, Comm. Algebra 15 (1987), 181-217 Zbl0612.14047MR876977
  4. H. Derksen, F. Kutzschebauch, Non-linearizable holomorphic group actions, Math. Annalen 311 (1998), 41-53 Zbl0911.32042MR1624259
  5. P. Heinzner, F. Kutzschebauch, Le principe d'Oka équivariant, C.R. Acad. Sci. Paris, Série I 315 (1992), 217-220 Zbl0782.32021MR1194532
  6. H.P. Kraft, Algebraic automorphisms of affine space, Topological Methods in Algebraic Transformation Groups, Proceedings of a Conference at Rutgers Vol. 80 (1989), 81-106, Birkhäuser Zbl0719.14030
  7. H.P. Kraft, G-vector bundles and the linearization problem, Group Actions and Invariant Theory, Proceeding of the 1988 Montreal Conference Vol. 10 (1988), 111-124, CMS Conference Proceedings Zbl0703.14009
  8. H.P. Kraft, G. Schwarz, Reductive group actions with one dimensional quotient, Publ. Math. IHES 76 (1992), 1-97 Zbl0783.14026MR1215592
  9. M. Masuda, T. Petrie, Stably trivial equivariant algebraic vector bundles, J. Amer. Math. Soc. 8 (1995), 687-714 Zbl0862.14009MR1303027
  10. M. Masuda, L. Moser-Jauslin, T. Petrie, Equivariant algebraic vector bundles over cones with smooth one dimensional quotient, J. Math. Soc. Japan 50 (1998), 379-414 Zbl0928.14013MR1613156
  11. M. Masuda, L. Moser-Jauslin, T. Petrie, The equivariant Serre problem for abelian groups, Topology 35 (1996), 329-334 Zbl0884.14007MR1380501
  12. K. Mederer, Moduli of G -equivariant vector bundles, (1995) 
  13. L. Moser-Jauslin, Triviality of certain equivariant vector bundles for finite cyclic groups, C.R. Acad. Sci. Paris 317 (1993), 139-144 Zbl0813.14033MR1231410
  14. D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171 Zbl0337.13011MR427303
  15. G. Schwarz, Exotic algebraic group actions, C.R. Acad. Sci. Paris 309 (1989), 89-94 Zbl0688.14040MR1004947
  16. A. Suslin, Projective modules over a polynomial ring, Soviet Doklady 17 (1976), 1160-1164 Zbl0354.13010
  17. A. Suslin, Projective modules over a polynomial ring, Dokl. Acad. Nauk. SSSR 26 (1976) Zbl0354.13010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.