Ergodic averages with deterministic weights
Fabien Durand[1]; Dominique Schneider[2]
- [1] Universidad de Chile, Centro de Modelamiento Matemático, Casilla 170-3, Correo 3, Santiago (chili) & Université de Picardie Jules Verne, Faculté de Mathématiques & d’Informatique, Pôle de Saint-Leu, 33 rue Saint-Leu, 80039 Amiens Cedex 1 (France)
- [2] Université de Picardie Jules Verne, Faculté de Mathématiques & d’Informatique, Pôle de Saint-Leu, 33 rue Saint-Leu, 80039 Amiens Cedex 1 (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 2, page 561-583
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDurand, Fabien, and Schneider, Dominique. "Ergodic averages with deterministic weights." Annales de l’institut Fourier 52.2 (2002): 561-583. <http://eudml.org/doc/115987>.
@article{Durand2002,
abstract = {We study the convergence of the ergodic averages $\{1\over N\}\sum ^\{N-1\}_\{k=0\}\theta (k)
f\circ T^\{u_k\}$ where $(\theta (k))_\{k\in \{\mathbb \{N\}\}\}$ is a bounded sequence and
$(u_k)_\{k\in \{\mathbb \{N\}\}\}$ a strictly increasing sequence of integers such that $\{\rm Sup\}_\{\alpha \in \{\mathbb \{R\}\}\}\vert \sum ^\{N-1\}_\{k=0\}\theta (k)\{\rm exp\}(2i\pi \alpha u_k)\vert =O(N^\delta )$ for some $\delta <1$. Moreover we give explicit such sequences $\theta $ and $u$ and we investigate in particular the case where $\theta $ is a $q$-multiplicative
sequence.},
affiliation = {Universidad de Chile, Centro de Modelamiento Matemático, Casilla 170-3, Correo 3, Santiago (chili) & Université de Picardie Jules Verne, Faculté de Mathématiques & d’Informatique, Pôle de Saint-Leu, 33 rue Saint-Leu, 80039 Amiens Cedex 1 (France); Université de Picardie Jules Verne, Faculté de Mathématiques & d’Informatique, Pôle de Saint-Leu, 33 rue Saint-Leu, 80039 Amiens Cedex 1 (France)},
author = {Durand, Fabien, Schneider, Dominique},
journal = {Annales de l’institut Fourier},
keywords = {weighted ergodic averages; central limit theorem; almost sure convergence; $q$-multiplicative sequences; substitutive sequences; generalized Thue-Morse sequences; -multiplicative sequences,substitution sequences},
language = {eng},
number = {2},
pages = {561-583},
publisher = {Association des Annales de l'Institut Fourier},
title = {Ergodic averages with deterministic weights},
url = {http://eudml.org/doc/115987},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Durand, Fabien
AU - Schneider, Dominique
TI - Ergodic averages with deterministic weights
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 2
SP - 561
EP - 583
AB - We study the convergence of the ergodic averages ${1\over N}\sum ^{N-1}_{k=0}\theta (k)
f\circ T^{u_k}$ where $(\theta (k))_{k\in {\mathbb {N}}}$ is a bounded sequence and
$(u_k)_{k\in {\mathbb {N}}}$ a strictly increasing sequence of integers such that ${\rm Sup}_{\alpha \in {\mathbb {R}}}\vert \sum ^{N-1}_{k=0}\theta (k){\rm exp}(2i\pi \alpha u_k)\vert =O(N^\delta )$ for some $\delta <1$. Moreover we give explicit such sequences $\theta $ and $u$ and we investigate in particular the case where $\theta $ is a $q$-multiplicative
sequence.
LA - eng
KW - weighted ergodic averages; central limit theorem; almost sure convergence; $q$-multiplicative sequences; substitutive sequences; generalized Thue-Morse sequences; -multiplicative sequences,substitution sequences
UR - http://eudml.org/doc/115987
ER -
References
top- J.-P. Allouche, M. Mendès France, On an extremal property of the Rudin-Shapiro sequence, Mathematika 32 (1985), 33-38 Zbl0561.10025MR817104
- J.-P. Allouche, P. Liardet, Generalized Rudin-Shapiro sequences, Acta Arith. 60 (1991), 1-27 Zbl0763.11010MR1129977
- J. Bourgain, Almost sure convergence and bounded entropy, Israel J. Math. 63 (1988), 79-97 Zbl0677.60042MR959049
- S. Durand, D. Schneider, Théorèmes ergodiques aléatoires et suite de poids régularisants, (2000)
- A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1967-1968), 259-265 Zbl0155.09003MR220693
- N. Guillotin, D. Schneider, Ergodic theorems for dynamic random walks, (1999) Zbl0936.60027MR1710513
- R. L. Jones, M. Lin, J. Olsen, Weighted ergodic theorems along subsequences of density zero, New York J. Math 3A (1997-1998), 89-98 Zbl0906.47007MR1611121
- J.-P. Kahane, Some random series of functions, Cambridge Studies in Advanced Mathematics (1985) Zbl0571.60002MR833073
- M. Keane, Generalized Morse sequences, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968), 335-353 Zbl0162.07201MR239047
- U. Krengel, Ergodic theorems, 6 (1985), de Gruyter, Berlin-New York Zbl0575.28009MR797411
- L. Kuipers, H. Niederreiter, Uniform distribution of sequences, (1974), Wiley and Sons Zbl0281.10001MR419394
- M. T. Lacey, On central limit theorems, modulus of continuity and Diophantine type for irrational rotations, J. Anal. Math 61 (1993), 47-59 Zbl0790.60027MR1253438
- E. Lesigne, C. Mauduit, Propriétés ergodiques des suites q-multiplicatives, Compositio Math. 100 (1996), 131-169 Zbl0853.11064MR1383463
- E. Lesigne, C. Mauduit, B. Mossé, Le théorème ergodique le long d’une suite -multiplicative, Compositio Math. 93 (1994), 49-79 Zbl0818.28006MR1286798
- M. Mendès France, Les suites à spectre vide et la répartition modulo 1, J. Number Theory 5 (1973), 1-15 Zbl0252.10033MR319909
- M. Mendès France, G. Tenenbaum, Dimension des courbes planes, papiers pliés et suites de Rudin-Shapiro, Bull. Soc. Math. France 109 (1981), 207-215 Zbl0468.10033MR623789
- H. M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc 22 (1921), 84-100 Zbl48.0786.06MR1501161
- M. Queffélec, Substitution dynamical systems--spectral analysis, 1294 (1987), Springer-Verlag, Berlin Zbl0642.28013MR924156
- W. Rudin, Some theorems on Fourier coefficients, Proc. Amer. Math. Soc 10 (1959), 855-859 Zbl0091.05706MR116184
- D. Schneider, M. Weber, Weighted averages of contractions along subsequences, Convergence in ergodic theory and probability (Columbus, OH, 1993) 5 (1996), 397-404, Ohio State Univ. Math. Res. Inst. Publ, de Gruyter, Berlin Zbl0864.60024
- H. Shapiro, Extremal problems for polynomials and power series, (1952)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.