Differential Galois realization of double covers
Teresa Crespo[1]; Zbigniew Hajto[2]
- [1] Universitat de Barcelona, Departament d'Àlgebra i Geometria, Gran via de les Corts Catalanes 585, 08007 Barcelona (Espagne)
- [2] Akademia Rolnicza, Zaklad Matematyki, al. Mickiewicza 24/28, 30-059 Kraków (Pologne)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 4, page 1017-1025
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCrespo, Teresa, and Hajto, Zbigniew. "Differential Galois realization of double covers." Annales de l’institut Fourier 52.4 (2002): 1017-1025. <http://eudml.org/doc/116000>.
@article{Crespo2002,
abstract = {An effective construction of homogeneous linear differential equations of order 2 with
Galois group $2A_4, 2S_4$ or $2A_5$ is presented.},
affiliation = {Universitat de Barcelona, Departament d'Àlgebra i Geometria, Gran via de les Corts Catalanes 585, 08007 Barcelona (Espagne); Akademia Rolnicza, Zaklad Matematyki, al. Mickiewicza 24/28, 30-059 Kraków (Pologne)},
author = {Crespo, Teresa, Hajto, Zbigniew},
journal = {Annales de l’institut Fourier},
keywords = {Picard-Vessiot extension; symmetric square of a differential equation; group representations; differential Galois group; alternating groups; symmetric group; double covers; differential field of characteristic 0},
language = {eng},
number = {4},
pages = {1017-1025},
publisher = {Association des Annales de l'Institut Fourier},
title = {Differential Galois realization of double covers},
url = {http://eudml.org/doc/116000},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Crespo, Teresa
AU - Hajto, Zbigniew
TI - Differential Galois realization of double covers
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 4
SP - 1017
EP - 1025
AB - An effective construction of homogeneous linear differential equations of order 2 with
Galois group $2A_4, 2S_4$ or $2A_5$ is presented.
LA - eng
KW - Picard-Vessiot extension; symmetric square of a differential equation; group representations; differential Galois group; alternating groups; symmetric group; double covers; differential field of characteristic 0
UR - http://eudml.org/doc/116000
ER -
References
top- T. Crespo, Z. Hajto, Finite linear groups as differential Galois groups, Bull. Pol. Ac. Math 49 (2001), 363-375 Zbl1040.12009MR1872670
- T. Crespo, Z. Hajto, Primitive unimodular groups of degree 2 as differential Galois groups, J. of Algebra 229 (2000), 678-694 Zbl1002.12005MR1769295
- T. Crespo, Z. Hajto, Recouvrements doubles comme groupes de Galois différentiels, C.R. Acad. Sci. Paris, Série I 333 (2001), 271-274 Zbl1018.12005MR1854763
- I. Kaplansky, An introduction to differential algebra, (1976), Hermann Zbl0083.03301MR460303
- A.R. Magid, Lectures on differential Galois theory, A.M.S (1997) Zbl0855.12001
- G. Malle, B.H. Matzat, Inverse Galois Theory, (1999), Springer-Verlag, Berlin Zbl0940.12001MR1711577
- G.A. Miller, H.F. Blichfeldt, L.E. Dickson, Theory and applications of finite groups, (1916), John Wiley and sons, Inc. Zbl46.0171.02
- J-P. Serre, L’invariant de Witt de la forme , Comment. Math. Helvetici 59 (1984), 651-676 Zbl0565.12014MR780081
- J-P. Serre, Cohomologie galoisienne, (1994), Springer Verlag Zbl0812.12002MR1324577
- M.F. Singer, An outline of differential Galois theory, Computer Algebra and Differential Equations (1989), 3-57, Academic Press Zbl0713.12005
- M.F. Singer, F. Ulmer, Galois groups of second and third order linear differential equations, Journal of Symbolic Computation 16 (1993), 9-36 Zbl0802.12004MR1237348
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.