Fixed points of discrete nilpotent group actions on
Suely Druck; Fuquan Fang[1]; Sebastião Firmo[2]
- [1] Universidade Federal Fluminense, Instituto de Matematica, Rua Mário Santos Braga s/n, Valonguinho, 24020-140 Niterói RJ (Brésil)
- [2] Nankai Institute of Mathematics, Tianjin 300071 (Rép. Pop. Chine) et Universidade Federal Fluminense, Instituto de Matematica, Rua Mário Santos Braga s/n, Valonguinho, 24020-140 Niterói RJ (Brésil)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 4, page 1075-1091
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDruck, Suely, Fang, Fuquan, and Firmo, Sebastião. "Fixed points of discrete nilpotent group actions on $S^2$." Annales de l’institut Fourier 52.4 (2002): 1075-1091. <http://eudml.org/doc/116004>.
@article{Druck2002,
abstract = {We prove that for each integer $k\ge 2$ there is an open neighborhood $\{\mathcal \{V\}\}_k$ of
the identity map of the 2-sphere $S^2$, in $C^1$ topology such that: if $G$ is a
nilpotent subgroup of $\{\rm Diff\}^1(S^2)$ with length $k$ of nilpotency, generated by
elements in $\{\mathcal \{V\}\}_k$, then the natural $G$-action on $S^2$ has nonempty fixed point
set. Moreover, the $G$-action has at least two fixed points if the action has a finite
nontrivial orbit.},
affiliation = {Universidade Federal Fluminense, Instituto de Matematica, Rua Mário Santos Braga s/n, Valonguinho, 24020-140 Niterói RJ (Brésil); Nankai Institute of Mathematics, Tianjin 300071 (Rép. Pop. Chine) et Universidade Federal Fluminense, Instituto de Matematica, Rua Mário Santos Braga s/n, Valonguinho, 24020-140 Niterói RJ (Brésil)},
author = {Druck, Suely, Fang, Fuquan, Firmo, Sebastião},
journal = {Annales de l’institut Fourier},
keywords = {group action; nilpotent group; fixed point; diffeomorphisms of },
language = {eng},
number = {4},
pages = {1075-1091},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fixed points of discrete nilpotent group actions on $S^2$},
url = {http://eudml.org/doc/116004},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Druck, Suely
AU - Fang, Fuquan
AU - Firmo, Sebastião
TI - Fixed points of discrete nilpotent group actions on $S^2$
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 4
SP - 1075
EP - 1091
AB - We prove that for each integer $k\ge 2$ there is an open neighborhood ${\mathcal {V}}_k$ of
the identity map of the 2-sphere $S^2$, in $C^1$ topology such that: if $G$ is a
nilpotent subgroup of ${\rm Diff}^1(S^2)$ with length $k$ of nilpotency, generated by
elements in ${\mathcal {V}}_k$, then the natural $G$-action on $S^2$ has nonempty fixed point
set. Moreover, the $G$-action has at least two fixed points if the action has a finite
nontrivial orbit.
LA - eng
KW - group action; nilpotent group; fixed point; diffeomorphisms of
UR - http://eudml.org/doc/116004
ER -
References
top- C. Bonatti, Un point fixe commun pour des difféomorphismes commutants de , Annals of Math. 129 (1989), 61-69 Zbl0689.57019MR979600
- C. Bonatti, Difféomorphismes commutants des surfaces et stabilité des fibrations en tores, Topology 29 (1989), 101-126 Zbl0703.57015MR1046627
- C. Camacho, A. Lins Neto, Geometric Theory of Foliations, (1985), Birkhäuser, Boston Zbl0568.57002MR824240
- S. Druck, F. Fang, S. Firmo, Fixed points of discrete nilpotent groups actions on surfaces Zbl1005.37019
- D.B.A. Epstein, W.P. Thurston, Transformations groups and natural bundles, Proc. London Math. Soc. 38 (1979), 219-236 Zbl0409.58001MR531161
- E. Ghys, Sur les groupes engendrés par des difféomorphismes proche de l'identité, Bol. Soc. Bras. Mat. 24 (1993), 137-178 Zbl0809.58004MR1254981
- C. Godbillon, Feuilletages - Études géométriques, (1991), Birkhäuser Zbl0724.58002MR1120547
- M. Handel, Commuting homeomorphisms of , Topology 31 (1992), 293-303 Zbl0755.57012MR1167171
- E. Lima, Commuting vector fields on 2-manifolds, Bull. Amer. Math. Soc. 69 (1963), 366-368 Zbl0117.17003MR149499
- E. Lima, Commuting vector fields on , Proc. Amer. Math. Soc. 15 (1964), 138-141 Zbl0117.17002MR159342
- E. Lima, Common singularities of commuting vector fields on 2-manifolds, Comment. Math. Helv. 39 (1964), 97-110 Zbl0124.16101MR176459
- J.F. Plante, Fixed points of Lie group actions on surfaces, Ergod. Th & Dynam. Sys. 6 (1986), 149-161 Zbl0609.57020MR837981
- H. Poincaré, Sur les courbes définis par une équation différentielle, J. Math. Pures Appl. 4 (1885), 167-244
- M. Raghunathan, Discrete subgroups of Lie groups, (1972), Springer-Verlag, Berlin, New York Zbl0254.22005MR507234
- J. Rotman, An introduction to the theory of groups, (1995), Springer-Verlag Zbl0810.20001MR1307623
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.