Fixed points of discrete nilpotent group actions on S 2

Suely Druck; Fuquan Fang[1]; Sebastião Firmo[2]

  • [1] Universidade Federal Fluminense, Instituto de Matematica, Rua Mário Santos Braga s/n, Valonguinho, 24020-140 Niterói RJ (Brésil)
  • [2] Nankai Institute of Mathematics, Tianjin 300071 (Rép. Pop. Chine) et Universidade Federal Fluminense, Instituto de Matematica, Rua Mário Santos Braga s/n, Valonguinho, 24020-140 Niterói RJ (Brésil)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 4, page 1075-1091
  • ISSN: 0373-0956

Abstract

top
We prove that for each integer k 2 there is an open neighborhood 𝒱 k of the identity map of the 2-sphere S 2 , in C 1 topology such that: if G is a nilpotent subgroup of Diff 1 ( S 2 ) with length k of nilpotency, generated by elements in 𝒱 k , then the natural G -action on S 2 has nonempty fixed point set. Moreover, the G -action has at least two fixed points if the action has a finite nontrivial orbit.

How to cite

top

Druck, Suely, Fang, Fuquan, and Firmo, Sebastião. "Fixed points of discrete nilpotent group actions on $S^2$." Annales de l’institut Fourier 52.4 (2002): 1075-1091. <http://eudml.org/doc/116004>.

@article{Druck2002,
abstract = {We prove that for each integer $k\ge 2$ there is an open neighborhood $\{\mathcal \{V\}\}_k$ of the identity map of the 2-sphere $S^2$, in $C^1$ topology such that: if $G$ is a nilpotent subgroup of $\{\rm Diff\}^1(S^2)$ with length $k$ of nilpotency, generated by elements in $\{\mathcal \{V\}\}_k$, then the natural $G$-action on $S^2$ has nonempty fixed point set. Moreover, the $G$-action has at least two fixed points if the action has a finite nontrivial orbit.},
affiliation = {Universidade Federal Fluminense, Instituto de Matematica, Rua Mário Santos Braga s/n, Valonguinho, 24020-140 Niterói RJ (Brésil); Nankai Institute of Mathematics, Tianjin 300071 (Rép. Pop. Chine) et Universidade Federal Fluminense, Instituto de Matematica, Rua Mário Santos Braga s/n, Valonguinho, 24020-140 Niterói RJ (Brésil)},
author = {Druck, Suely, Fang, Fuquan, Firmo, Sebastião},
journal = {Annales de l’institut Fourier},
keywords = {group action; nilpotent group; fixed point; diffeomorphisms of },
language = {eng},
number = {4},
pages = {1075-1091},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fixed points of discrete nilpotent group actions on $S^2$},
url = {http://eudml.org/doc/116004},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Druck, Suely
AU - Fang, Fuquan
AU - Firmo, Sebastião
TI - Fixed points of discrete nilpotent group actions on $S^2$
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 4
SP - 1075
EP - 1091
AB - We prove that for each integer $k\ge 2$ there is an open neighborhood ${\mathcal {V}}_k$ of the identity map of the 2-sphere $S^2$, in $C^1$ topology such that: if $G$ is a nilpotent subgroup of ${\rm Diff}^1(S^2)$ with length $k$ of nilpotency, generated by elements in ${\mathcal {V}}_k$, then the natural $G$-action on $S^2$ has nonempty fixed point set. Moreover, the $G$-action has at least two fixed points if the action has a finite nontrivial orbit.
LA - eng
KW - group action; nilpotent group; fixed point; diffeomorphisms of
UR - http://eudml.org/doc/116004
ER -

References

top
  1. C. Bonatti, Un point fixe commun pour des difféomorphismes commutants de S 2 , Annals of Math. 129 (1989), 61-69 Zbl0689.57019MR979600
  2. C. Bonatti, Difféomorphismes commutants des surfaces et stabilité des fibrations en tores, Topology 29 (1989), 101-126 Zbl0703.57015MR1046627
  3. C. Camacho, A. Lins Neto, Geometric Theory of Foliations, (1985), Birkhäuser, Boston Zbl0568.57002MR824240
  4. S. Druck, F. Fang, S. Firmo, Fixed points of discrete nilpotent groups actions on surfaces Zbl1005.37019
  5. D.B.A. Epstein, W.P. Thurston, Transformations groups and natural bundles, Proc. London Math. Soc. 38 (1979), 219-236 Zbl0409.58001MR531161
  6. E. Ghys, Sur les groupes engendrés par des difféomorphismes proche de l'identité, Bol. Soc. Bras. Mat. 24 (1993), 137-178 Zbl0809.58004MR1254981
  7. C. Godbillon, Feuilletages - Études géométriques, (1991), Birkhäuser Zbl0724.58002MR1120547
  8. M. Handel, Commuting homeomorphisms of S 2 , Topology 31 (1992), 293-303 Zbl0755.57012MR1167171
  9. E. Lima, Commuting vector fields on 2-manifolds, Bull. Amer. Math. Soc. 69 (1963), 366-368 Zbl0117.17003MR149499
  10. E. Lima, Commuting vector fields on S 2 , Proc. Amer. Math. Soc. 15 (1964), 138-141 Zbl0117.17002MR159342
  11. E. Lima, Common singularities of commuting vector fields on 2-manifolds, Comment. Math. Helv. 39 (1964), 97-110 Zbl0124.16101MR176459
  12. J.F. Plante, Fixed points of Lie group actions on surfaces, Ergod. Th & Dynam. Sys. 6 (1986), 149-161 Zbl0609.57020MR837981
  13. H. Poincaré, Sur les courbes définis par une équation différentielle, J. Math. Pures Appl. 4 (1885), 167-244 
  14. M. Raghunathan, Discrete subgroups of Lie groups, (1972), Springer-Verlag, Berlin, New York Zbl0254.22005MR507234
  15. J. Rotman, An introduction to the theory of groups, (1995), Springer-Verlag Zbl0810.20001MR1307623

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.