A formula for the rational LS-category of certain spaces

Luis Lechuga[1]; Aniceto Murillo[1]

  • [1] Universidad de Málaga, Departamento de Algebra, Geométrí a y Topologí a, Apartado 59, 29080 Málaga (Espagne)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 5, page 1585-1590
  • ISSN: 0373-0956

Abstract

top
In this paper we find a formula for the rational LS-category of certain elliptic spaces which generalizes or complements previous work of the subject. This formula is given in terms of the minimal model of the space.

How to cite

top

Lechuga, Luis, and Murillo, Aniceto. "A formula for the rational LS-category of certain spaces." Annales de l’institut Fourier 52.5 (2002): 1585-1590. <http://eudml.org/doc/116019>.

@article{Lechuga2002,
abstract = {In this paper we find a formula for the rational LS-category of certain elliptic spaces which generalizes or complements previous work of the subject. This formula is given in terms of the minimal model of the space.},
affiliation = {Universidad de Málaga, Departamento de Algebra, Geométrí a y Topologí a, Apartado 59, 29080 Málaga (Espagne); Universidad de Málaga, Departamento de Algebra, Geométrí a y Topologí a, Apartado 59, 29080 Málaga (Espagne)},
author = {Lechuga, Luis, Murillo, Aniceto},
journal = {Annales de l’institut Fourier},
keywords = {LS-category; minimal model; Ljusternik-Schnirelman category; rational homotopy theory; Toomer invariant},
language = {eng},
number = {5},
pages = {1585-1590},
publisher = {Association des Annales de l'Institut Fourier},
title = {A formula for the rational LS-category of certain spaces},
url = {http://eudml.org/doc/116019},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Lechuga, Luis
AU - Murillo, Aniceto
TI - A formula for the rational LS-category of certain spaces
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 5
SP - 1585
EP - 1590
AB - In this paper we find a formula for the rational LS-category of certain elliptic spaces which generalizes or complements previous work of the subject. This formula is given in terms of the minimal model of the space.
LA - eng
KW - LS-category; minimal model; Ljusternik-Schnirelman category; rational homotopy theory; Toomer invariant
UR - http://eudml.org/doc/116019
ER -

References

top
  1. J. Alexander, B. Jessup, Explicit formulae for the rational L S -category of some homogeneous spaces, (2001) Zbl0999.55001
  2. Y. Félix, S. Halperin, Rational L S -category and its applications, Transactions of the American Mathematical Society 273 (1982), 1-38 Zbl0508.55004MR664027
  3. Y. Félix, S. Halperin, J.M. Lemaire, The rational L S -category of products and Poincaré duality complexes, Topology 37 (1998), 749-756 Zbl0897.55001MR1607732
  4. Y. Félix, S. Halperin, J.C. Thomas, Rational Homotopy Theory, 205 (2000), Springer Zbl0961.55002MR1802847
  5. S. Ghorbal, B. Jessup, Estimating the rational L S -category of elliptic spaces, Proceedings of the American Mathematical Society 129 (2000), 1833-1842 Zbl0993.55002MR1814117
  6. B. Jessup, L S -category and homogeneous spaces, Journal of Pure and Applied Algebra 65 (1990), 45-56 Zbl0701.55012MR1065062
  7. L. Lechuga, A. Murillo, The fundamental class of a rational space, the graph coloring problem and other classical decision problems, Bull. of the Belg. Math. Soc 8 (2001), 451-467 Zbl0987.55012MR1860873
  8. A. Murillo, The top cohomology class of certain spaces, Journal of Pure and Applied Algebra 84 (1993), 209-214 Zbl0766.55007MR1201053
  9. A. Murillo, The top cohomology class of classical compact homogeneous spaces, Algebras, Groups and Geometries 16 (1999), 531-550 Zbl0995.57010MR1726733

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.