A formula for the rational LS-category of certain spaces
Luis Lechuga[1]; Aniceto Murillo[1]
- [1] Universidad de Málaga, Departamento de Algebra, Geométrí a y Topologí a, Apartado 59, 29080 Málaga (Espagne)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 5, page 1585-1590
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLechuga, Luis, and Murillo, Aniceto. "A formula for the rational LS-category of certain spaces." Annales de l’institut Fourier 52.5 (2002): 1585-1590. <http://eudml.org/doc/116019>.
@article{Lechuga2002,
abstract = {In this paper we find a formula for the rational LS-category of certain elliptic spaces
which generalizes or complements previous work of the subject. This formula is given in
terms of the minimal model of the space.},
affiliation = {Universidad de Málaga, Departamento de Algebra, Geométrí a y Topologí a, Apartado 59, 29080 Málaga (Espagne); Universidad de Málaga, Departamento de Algebra, Geométrí a y Topologí a, Apartado 59, 29080 Málaga (Espagne)},
author = {Lechuga, Luis, Murillo, Aniceto},
journal = {Annales de l’institut Fourier},
keywords = {LS-category; minimal model; Ljusternik-Schnirelman category; rational homotopy theory; Toomer invariant},
language = {eng},
number = {5},
pages = {1585-1590},
publisher = {Association des Annales de l'Institut Fourier},
title = {A formula for the rational LS-category of certain spaces},
url = {http://eudml.org/doc/116019},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Lechuga, Luis
AU - Murillo, Aniceto
TI - A formula for the rational LS-category of certain spaces
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 5
SP - 1585
EP - 1590
AB - In this paper we find a formula for the rational LS-category of certain elliptic spaces
which generalizes or complements previous work of the subject. This formula is given in
terms of the minimal model of the space.
LA - eng
KW - LS-category; minimal model; Ljusternik-Schnirelman category; rational homotopy theory; Toomer invariant
UR - http://eudml.org/doc/116019
ER -
References
top- J. Alexander, B. Jessup, Explicit formulae for the rational -category of some homogeneous spaces, (2001) Zbl0999.55001
- Y. Félix, S. Halperin, Rational -category and its applications, Transactions of the American Mathematical Society 273 (1982), 1-38 Zbl0508.55004MR664027
- Y. Félix, S. Halperin, J.M. Lemaire, The rational -category of products and Poincaré duality complexes, Topology 37 (1998), 749-756 Zbl0897.55001MR1607732
- Y. Félix, S. Halperin, J.C. Thomas, Rational Homotopy Theory, 205 (2000), Springer Zbl0961.55002MR1802847
- S. Ghorbal, B. Jessup, Estimating the rational -category of elliptic spaces, Proceedings of the American Mathematical Society 129 (2000), 1833-1842 Zbl0993.55002MR1814117
- B. Jessup, -category and homogeneous spaces, Journal of Pure and Applied Algebra 65 (1990), 45-56 Zbl0701.55012MR1065062
- L. Lechuga, A. Murillo, The fundamental class of a rational space, the graph coloring problem and other classical decision problems, Bull. of the Belg. Math. Soc 8 (2001), 451-467 Zbl0987.55012MR1860873
- A. Murillo, The top cohomology class of certain spaces, Journal of Pure and Applied Algebra 84 (1993), 209-214 Zbl0766.55007MR1201053
- A. Murillo, The top cohomology class of classical compact homogeneous spaces, Algebras, Groups and Geometries 16 (1999), 531-550 Zbl0995.57010MR1726733
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.