Double Schubert polynomials and degeneracy loci for the classical groups
Andrew Kresch[1]; Harry Tamvakis[2]
- [1] University of Pennsylvania, Department of Mathematics, Philadelphia PA 19104-6395 (USA)
- [2] Brandeis University, Department of Mathematics, Waltham MA 02454-9110 (USA)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 6, page 1681-1727
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKresch, Andrew, and Tamvakis, Harry. "Double Schubert polynomials and degeneracy loci for the classical groups." Annales de l’institut Fourier 52.6 (2002): 1681-1727. <http://eudml.org/doc/116024>.
@article{Kresch2002,
abstract = {We propose a theory of double Schubert polynomials $P_w(X,Y)$ for the Lie types $B$, $C$,
$D$ which naturally extends the family of Lascoux and Schützenberger in type $A$. These
polynomials satisfy positivity, orthogonality and stability properties, and represent the
classes of Schubert varieties and degeneracy loci of vector bundles. When $w$ is a
maximal Grassmannian element of the Weyl group, $P_w(X,Y)$ can be expressed in terms of
Schur-type determinants and Pfaffians, in analogy with the type $A$ formula of Kempf and
Laksov. An example, motivated by quantum cohomology, shows there are no Chern class
formulas for degeneracy loci of “isotropic morphisms” of bundles.},
affiliation = {University of Pennsylvania, Department of Mathematics, Philadelphia PA 19104-6395 (USA); Brandeis University, Department of Mathematics, Waltham MA 02454-9110 (USA)},
author = {Kresch, Andrew, Tamvakis, Harry},
journal = {Annales de l’institut Fourier},
keywords = {degeneracy loci; Schubert polynomials; determinantal formula; Weyl groups; Grassmannians; Lagrangian; Schubert cycles; Chern classes},
language = {eng},
number = {6},
pages = {1681-1727},
publisher = {Association des Annales de l'Institut Fourier},
title = {Double Schubert polynomials and degeneracy loci for the classical groups},
url = {http://eudml.org/doc/116024},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Kresch, Andrew
AU - Tamvakis, Harry
TI - Double Schubert polynomials and degeneracy loci for the classical groups
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 6
SP - 1681
EP - 1727
AB - We propose a theory of double Schubert polynomials $P_w(X,Y)$ for the Lie types $B$, $C$,
$D$ which naturally extends the family of Lascoux and Schützenberger in type $A$. These
polynomials satisfy positivity, orthogonality and stability properties, and represent the
classes of Schubert varieties and degeneracy loci of vector bundles. When $w$ is a
maximal Grassmannian element of the Weyl group, $P_w(X,Y)$ can be expressed in terms of
Schur-type determinants and Pfaffians, in analogy with the type $A$ formula of Kempf and
Laksov. An example, motivated by quantum cohomology, shows there are no Chern class
formulas for degeneracy loci of “isotropic morphisms” of bundles.
LA - eng
KW - degeneracy loci; Schubert polynomials; determinantal formula; Weyl groups; Grassmannians; Lagrangian; Schubert cycles; Chern classes
UR - http://eudml.org/doc/116024
ER -
References
top- E. Akyildiz, J. Carrell, An algebraic formula for the Gysin homomorphism from to , Illinois J. Math 31 (1987), 312-320 Zbl0629.57030MR882116
- N. Bergeron, F. Sottile, Schubert polynomials, the Bruhat order, and the geometry of flag manifolds, Duke Math. J 95 (1998), 373-423 Zbl0939.05084MR1652021
- I. N. Bernstein, I. M. Gelfand, S. I. Gelfand, Schubert cells and cohomology of the spaces , Russian Math. Surveys 28 (1973), 1-26 Zbl0289.57024MR429933
- A. Bertram, Quantum Schubert calculus, Adv. Math 128 (1997), 289-305 Zbl0945.14031MR1454400
- S. Billey, Kostant polynomials and the cohomology ring for , Duke Math. J 96 (1999), 205-224 Zbl0980.22018MR1663931
- S. Billey, M. Haiman, Schubert polynomials for the classical groups, J. Amer. Math. Soc 8 (1995), 443-482 Zbl0832.05098MR1290232
- A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math 57 (1953), 115-207 Zbl0052.40001MR51508
- I. Ciocan, - Fontanine, The quantum cohomology ring of flag varieties, Trans. Amer. Math. Soc 351 (1999), 2695-2729 Zbl0920.14027MR1487610
- M. Demazure, Invariants symétriques des groupes de Weyl et torsion, Invent. Math 21 (1973), 287-301 Zbl0269.22010MR342522
- M. Demazure, Désingularization des variétés de Schubert généralisées, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 7 (1974), 53-88 Zbl0312.14009MR354697
- S. Fomin, A. N. Kirillov, Combinatorial -analogs of Schubert polynomials, Trans. Amer. Math. Soc 348 (1996), 3591-3620 Zbl0871.05060MR1340174
- W. Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J 65 (1992), 381-420 Zbl0788.14044MR1154177
- W. Fulton, Schubert varieties in flag bundles for the classical groups, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) (1996), 241-262 Zbl0862.14032
- W. Fulton, Determinantal formulas for orthogonal and symplectic degeneracy loci, J. Differential Geom 43 (1996), 276-290 Zbl0911.14001MR1424427
- W. Fulton, Intersection Theory, 2 (1998), Springer-Verlag, Berlin Zbl0885.14002MR1644323
- W. Fulton, P. Pragacz, Schubert varieties and degeneracy loci, 1689 (1998), Springer-Verlag, Berlin Zbl0913.14016MR1639468
- W. Graham, The class of the diagonal in flag bundles, J. Differential Geom 45 (1997), 471-487 Zbl0935.14015MR1472885
- A. Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique IV: Les schémas de Hilbert, Séminaire Bourbaki 13 (1960/61) Zbl0236.14003
- J. Harris, L. W. Tu, On symmetric and skew-symmetric determinantal varieties, Topology 23 (1984), 71-84 Zbl0534.55010MR721453
- T. Józefiak, A. Lascoux, P. Pragacz, Classes of determinantal varieties associated with symmetric and skew-symmetric matrices, Math. USSR Izvestija 18 (1982), 575-586 Zbl0489.14020MR623355
- G. Kempf, D. Laksov, The determinantal formula of Schubert calculus, Acta Math 132 (1974), 153-162 Zbl0295.14023MR338006
- A. Kresch, H. Tamvakis, Quantum cohomology of the Lagrangian Grassmannian Zbl1051.53070MR1993764
- A. Kresch, H. Tamvakis, Quantum cohomology of orthogonal Grassmannians, (2001) Zbl1077.14083MR2027200
- A. Lascoux, Classes de Chern des variétés de drapeaux, C. R. Acad. Sci. Paris, Sér. I Math 295 (1982), 393-398 Zbl0495.14032MR684734
- A. Lascoux, P. Pragacz, Operator calculus for -polynomials and Schubert polynomials, Adv. Math 140 (1998), 1-43 Zbl0951.14035MR1656481
- A. Lascoux, P. Pragacz, Orthogonal divided differences and Schubert polynomials, -functions, and vertex operators, Michigan Math. J 48 (2000), 417-441 Zbl1003.05106MR1786499
- A. Lascoux, P. Pragacz, Schur -functions and degeneracy locus formulas for morphisms with symmetries, (2000), 239-263, Birkhäuser, Boston Zbl0969.14033
- A. Lascoux, M.-P. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris, Sér. I Math 294 (1982), 447-450 Zbl0495.14031MR660739
- I. G. Macdonald, Notes on Schubert polynomials, 6 (1991), Publ. LACIM, Univ. de Québec à Montréal, Montréal Zbl0784.05061MR1161461
- I. G. Macdonald, Schubert polynomials, Surveys in combinatorics, 1991 (Guildford, 1991) 166 (1991), 73-99, Cambridge Univ. Press, Cambridge Zbl0784.05061
- I. G. Macdonald, Symmetric Functions and Hall Polynomials, (1995), Clarendon Press, Oxford Zbl0824.05059MR1354144
- P. Pragacz, Cycles of isotropic subspaces and formulas for symmetric degeneracy loci, Topics in Algebra, Part 2 (Warsaw, 1988) 26 (1990), 189-199, Banach Center Publ, Part 2, PWN, Warsaw Zbl0743.14009
- P. Pragacz, Algebro-geometric applications of Schur - and -polynomials, Séminaire d'Algèbre Dubreil-Malliavin 1989-1990 1478 (1991), 130-191, Springer-Verlag, Berlin Zbl0783.14031
- P. Pragacz, J. Ratajski, A Pieri-type theorem for Lagrangian and odd orthogonal Grassmannians, J. reine angew. Math 476 (1996), 143-189 Zbl0847.14029MR1401699
- P. Pragacz, J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy loci; -polynomial approach, Compositio Math 107 (1997), 11-87 Zbl0916.14026MR1457343
- I. Schur, Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. reine angew. Math 139 (1911), 155-250 Zbl42.0154.02
- H. Tamvakis, Arakelov theory of the Lagrangian Grassmannian, J. reine angew. Math 516 (1999), 207-223 Zbl0934.14018MR1724621
- L. W. Tu, Degeneracy loci, Proc. conf. algebraic geom. (Berlin, 1985) 92 (1986), 296-305, Teubner, Leipzig Zbl0626.14019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.