A general Hilbert-Mumford criterion

Jürgen Hausen[1]

  • [1] Universität Konstanz, Fachbereich Mathematik und Statistik, Universitätstrasse 10, 78457 Konstanz (Allemagne)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 3, page 701-712
  • ISSN: 0373-0956

Abstract

top
Let a reductive group G act on an algebraic variety X . We give a Hilbert-Mumford type criterion for the construction of open G -invariant subsets V X admitting a good quotient by G .

How to cite

top

Hausen, Jürgen. "A general Hilbert-Mumford criterion." Annales de l’institut Fourier 53.3 (2003): 701-712. <http://eudml.org/doc/116049>.

@article{Hausen2003,
abstract = {Let a reductive group $G$ act on an algebraic variety $X$. We give a Hilbert-Mumford type criterion for the construction of open $G$-invariant subsets $V\subset X$ admitting a good quotient by $G$.},
affiliation = {Universität Konstanz, Fachbereich Mathematik und Statistik, Universitätstrasse 10, 78457 Konstanz (Allemagne)},
author = {Hausen, Jürgen},
journal = {Annales de l’institut Fourier},
keywords = {reductive group actions; good quotients},
language = {eng},
number = {3},
pages = {701-712},
publisher = {Association des Annales de l'Institut Fourier},
title = {A general Hilbert-Mumford criterion},
url = {http://eudml.org/doc/116049},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Hausen, Jürgen
TI - A general Hilbert-Mumford criterion
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 3
SP - 701
EP - 712
AB - Let a reductive group $G$ act on an algebraic variety $X$. We give a Hilbert-Mumford type criterion for the construction of open $G$-invariant subsets $V\subset X$ admitting a good quotient by $G$.
LA - eng
KW - reductive group actions; good quotients
UR - http://eudml.org/doc/116049
ER -

References

top
  1. A. Białynicki-Birula, Algebraic Quotients, R.V. Gamkrelidze Vol. 131 (2002), 1-82 Zbl1061.14046
  2. A. Białynicki-Birula, J. Świȩcicka, Generalized moment functions and orbit spaces, Amer. J. Math Vol. 109 (1987), 229-238 Zbl0624.14009
  3. A. Białynicki-Birula, J. Świȩcicka, A reduction theorem for existence of good quotients, Amer. J. Math Vol. 113 (1990), 189-201 Zbl0741.14031
  4. A. Białynicki-Birula, J. Świȩcicka, On complete orbit spaces of ( 2 ) -actions, Colloq. Math Vol. 55 (1988), 229-241 Zbl0682.14034
  5. A. Białynicki-Birula, J. Świȩcicka, On complete orbit spaces of ( 2 ) -actions II, Colloq. Math Vol. 63 (1992), 9-20 Zbl0813.14032
  6. A. Białynicki-Birula, J. Świȩcicka, Open subsets of projective spaces with a good quotient by an action of a reductive group, Transform. Groups Vol. 1 (1996), 153-185 Zbl0912.14016
  7. A. Białynicki-Birula, J. Świȩcicka, Three theorems on existence of good quotients, Math. Ann 307 (1997), 143-149 Zbl0870.14034
  8. D. Birkes, Orbits of linear algebraic groups, Ann. Math., Ser. 2 93 (1971), 459-475 Zbl0198.35001MR296077
  9. D. Cox, The homogeneous coordinate ring of a toric variety, J. Algebr. Geom Vol. 4 (1995), 17-50 Zbl0846.14032MR1299003
  10. J. Hausen, Equivariant embeddings into smooth toric varieties, Canad. Math. J Vol. 54 (2002), 554-570 Zbl1055.14014MR1900763
  11. J. Hausen, Producing good quotients by embedding into toric varieties, 6 (2002), 193-212, SMF Zbl1050.14045
  12. J. Hausen, A Hilbert-Mumford Criterion for SL 2 -actions Zbl1054.14060MR2031843
  13. J. Świȩcicka, Quotients of toric varieties by actions of subtori, Colloq. Math 82 (1999), 105-116 Zbl0961.14032MR1736038
  14. J. Świȩcicka, A combinatorial construction of sets with good quotients by an action of a reductive group, Colloq. Math 87 (2001), 85-102 Zbl0963.14020MR1812145
  15. J. W, Embeddings in toric varieties and prevarieties, J. Algebr. Geom 2 (1993), 705-726 Zbl0809.14043MR1227474

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.