A general Hilbert-Mumford criterion

Jürgen Hausen[1]

  • [1] Universität Konstanz, Fachbereich Mathematik und Statistik, Universitätstrasse 10, 78457 Konstanz (Allemagne)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 3, page 701-712
  • ISSN: 0373-0956

Abstract

top
Let a reductive group act on an algebraic variety . We give a Hilbert-Mumford type criterion for the construction of open -invariant subsets admitting a good quotient by .

How to cite

top

Hausen, Jürgen. "A general Hilbert-Mumford criterion." Annales de l’institut Fourier 53.3 (2003): 701-712. <http://eudml.org/doc/116049>.

@article{Hausen2003,
abstract = {Let a reductive group $G$ act on an algebraic variety $X$. We give a Hilbert-Mumford type criterion for the construction of open $G$-invariant subsets $V\subset X$ admitting a good quotient by $G$.},
affiliation = {Universität Konstanz, Fachbereich Mathematik und Statistik, Universitätstrasse 10, 78457 Konstanz (Allemagne)},
author = {Hausen, Jürgen},
journal = {Annales de l’institut Fourier},
keywords = {reductive group actions; good quotients},
language = {eng},
number = {3},
pages = {701-712},
publisher = {Association des Annales de l'Institut Fourier},
title = {A general Hilbert-Mumford criterion},
url = {http://eudml.org/doc/116049},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Hausen, Jürgen
TI - A general Hilbert-Mumford criterion
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 3
SP - 701
EP - 712
AB - Let a reductive group $G$ act on an algebraic variety $X$. We give a Hilbert-Mumford type criterion for the construction of open $G$-invariant subsets $V\subset X$ admitting a good quotient by $G$.
LA - eng
KW - reductive group actions; good quotients
UR - http://eudml.org/doc/116049
ER -

References

top
  1. A. Białynicki-Birula, Algebraic Quotients, R.V. Gamkrelidze Vol. 131 (2002), 1-82 Zbl1061.14046
  2. A. Białynicki-Birula, J. Świȩcicka, Generalized moment functions and orbit spaces, Amer. J. Math Vol. 109 (1987), 229-238 Zbl0624.14009
  3. A. Białynicki-Birula, J. Świȩcicka, A reduction theorem for existence of good quotients, Amer. J. Math Vol. 113 (1990), 189-201 Zbl0741.14031
  4. A. Białynicki-Birula, J. Świȩcicka, On complete orbit spaces of -actions, Colloq. Math Vol. 55 (1988), 229-241 Zbl0682.14034
  5. A. Białynicki-Birula, J. Świȩcicka, On complete orbit spaces of -actions II, Colloq. Math Vol. 63 (1992), 9-20 Zbl0813.14032
  6. A. Białynicki-Birula, J. Świȩcicka, Open subsets of projective spaces with a good quotient by an action of a reductive group, Transform. Groups Vol. 1 (1996), 153-185 Zbl0912.14016
  7. A. Białynicki-Birula, J. Świȩcicka, Three theorems on existence of good quotients, Math. Ann 307 (1997), 143-149 Zbl0870.14034
  8. D. Birkes, Orbits of linear algebraic groups, Ann. Math., Ser. 2 93 (1971), 459-475 Zbl0198.35001MR296077
  9. D. Cox, The homogeneous coordinate ring of a toric variety, J. Algebr. Geom Vol. 4 (1995), 17-50 Zbl0846.14032MR1299003
  10. J. Hausen, Equivariant embeddings into smooth toric varieties, Canad. Math. J Vol. 54 (2002), 554-570 Zbl1055.14014MR1900763
  11. J. Hausen, Producing good quotients by embedding into toric varieties, 6 (2002), 193-212, SMF Zbl1050.14045
  12. J. Hausen, A Hilbert-Mumford Criterion for -actions Zbl1054.14060MR2031843
  13. J. Świȩcicka, Quotients of toric varieties by actions of subtori, Colloq. Math 82 (1999), 105-116 Zbl0961.14032MR1736038
  14. J. Świȩcicka, A combinatorial construction of sets with good quotients by an action of a reductive group, Colloq. Math 87 (2001), 85-102 Zbl0963.14020MR1812145
  15. J. W, Embeddings in toric varieties and prevarieties, J. Algebr. Geom 2 (1993), 705-726 Zbl0809.14043MR1227474

NotesEmbed ?

top

You must be logged in to post comments.