On the Jung method in positive characteristic

Olivier Piltant[1]

  • [1] Université de Versailles, LAMA--UMR 8100 du CNRS, 45 avenue des États-Unis, Bâtiment Fermat, 78035 Versailles (France)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 4, page 1237-1258
  • ISSN: 0373-0956

Abstract

top
Let X ¯ be a germ of normal surface with local ring R ¯ covering a germ of regular surface X with local ring R of characteristic p > 0 . Given an extension of valuation rings W / V birationally dominating R ¯ / R , we study the existence of a new such pair of local rings R ¯ ' / R ' birationally dominating R ¯ / R , such that R ' is regular and R ¯ ' has only toric singularities. This is achieved when W / V is defectless or when [ W : V ] is equal to p

How to cite

top

Piltant, Olivier. "On the Jung method in positive characteristic." Annales de l’institut Fourier 53.4 (2003): 1237-1258. <http://eudml.org/doc/116066>.

@article{Piltant2003,
abstract = {Let $\overline\{X\}$ be a germ of normal surface with local ring $\overline\{R\}$ covering a germ of regular surface $X$ with local ring $R$ of characteristic $p&gt;0$. Given an extension of valuation rings $W/V$ birationally dominating $\overline\{R\}/R$, we study the existence of a new such pair of local rings $\overline\{R\}^\{\prime \}/R^\{\prime \}$ birationally dominating $\overline\{R\}/R$, such that $R^\{\prime \}$ is regular and $\overline\{R\}^\{\prime \}$ has only toric singularities. This is achieved when $W/V$ is defectless or when $[W:V ]$ is equal to $p$},
affiliation = {Université de Versailles, LAMA--UMR 8100 du CNRS, 45 avenue des États-Unis, Bâtiment Fermat, 78035 Versailles (France)},
author = {Piltant, Olivier},
journal = {Annales de l’institut Fourier},
keywords = {valuations; coverings; resolution of singularities},
language = {eng},
number = {4},
pages = {1237-1258},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the Jung method in positive characteristic},
url = {http://eudml.org/doc/116066},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Piltant, Olivier
TI - On the Jung method in positive characteristic
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 4
SP - 1237
EP - 1258
AB - Let $\overline{X}$ be a germ of normal surface with local ring $\overline{R}$ covering a germ of regular surface $X$ with local ring $R$ of characteristic $p&gt;0$. Given an extension of valuation rings $W/V$ birationally dominating $\overline{R}/R$, we study the existence of a new such pair of local rings $\overline{R}^{\prime }/R^{\prime }$ birationally dominating $\overline{R}/R$, such that $R^{\prime }$ is regular and $\overline{R}^{\prime }$ has only toric singularities. This is achieved when $W/V$ is defectless or when $[W:V ]$ is equal to $p$
LA - eng
KW - valuations; coverings; resolution of singularities
UR - http://eudml.org/doc/116066
ER -

References

top
  1. S. Abhyankar, On the ramification of algebraic functions, Amer. J. Math 77 (1955), 575-592 Zbl0064.27501MR71851
  2. S. Abhyankar, Local uniformization on algebraic surfaces over ground fields of characteristic p 0 , Ann. Math. 63 (1956), 491-526 Zbl0108.16803MR78017
  3. S. Abhyankar, On the valuations centered in a local domain, Amer. J. Math 78 (1956), 321-348 Zbl0074.26301MR82477
  4. S. Abhyankar, Simultaneous resolution for algebraic surfaces, Amer. J. Math 78 (1956), 761-790 Zbl0073.37902MR82722
  5. S. Abhyankar, Ramification theoretic methods in algebraic geometry, 43 (1959), Princeton University Press Zbl0101.38201MR105416
  6. S. Abhyankar, Tame Coverings and fundamental groups of algebraic varieties, Amer. J. Math 81 (1959), 46-94 Zbl0100.16401MR104675
  7. D. Abramovich, A. J. de Jong, Smoothness, semistability and toroidal geometry, J. Alg. Geom. 6 (1997), 789-801 Zbl0906.14006MR1487237
  8. F. Bogomolov, T. Pantev, Weak Hironaka theorem, Math. Res. Lett. 3 (1996), 299-307 Zbl0869.14007MR1397679
  9. S.D. Cutkosky, Local factorization and monomialization of morphisms, Astérisque 260 (1999) Zbl0941.14001MR1734239
  10. S.D. Cutkosky, Simultaneous resolution of singularities, Proc. Amer. Math. Soc 128 (2000), 1905-1910 Zbl0974.14010MR1646312
  11. S.D. Cutkosky, Generically finite morphisms and simultaneous resolution of singularities, (2001) Zbl1045.14008MR2011766
  12. S.D. Cutkosky, O. Piltant, Monomial resolutions of morphisms of algebraic surfaces. In honor of R. Hartshorne, Comm. Alg 28 (2000), 5935-5959 Zbl1003.14004MR1808613
  13. S.D. Cutkosky, O. Piltant, Ramification of valuations, (2002) Zbl1105.14015MR2038546
  14. A. Grothendieck, Revêtements étales et groupe fondamental, 224 (1971), Springer Verlag Zbl0234.14002MR354651
  15. A. Grothendieck, J.P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, 208 (1971), Springer-Verlag Zbl0216.33001MR316453
  16. R. Hartshorne, Algebraic geometry, 52 (1977), Springer-Verlag Zbl0367.14001MR463157
  17. A. J. de Jong, Smoothness, semistability and alterations, Publ. Math. IHES 83 (1996), 51-93 Zbl0916.14005
  18. H. Jung, Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderlichen in der Umgebung einer Stelle, Journal für Mathematik 133 (1908), 289-314 Zbl39.0493.01
  19. G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings I, 339 (1973), Springer Verlag Zbl0271.14017MR335518
  20. H. Knaf, and F.V. Kuhlmann, Abhyankar places admit local uniformization in any characteristic, (2001) Zbl1159.13301
  21. W. Krull, Galoissche Theorie bewerteter Körper, Sitzungsbereichte der Bayerschen Akademie der Wissenschaften, München (1930), 225-238 Zbl56.0141.02
  22. F.V. Kuhlmann, On local uniformization in arbitary characteristic I, (2000) MR1748629
  23. J. Lipman, Rational singularities with applications to algebraic surfaces and unique factorization, Publ. Math. IHES 36 (1969), 195-279 Zbl0181.48903MR276239
  24. J. Lipman, Introduction to resolution of singularities, Algebraic Geometry, Arcata, 1974 29 (1975), 187-230 Zbl0306.14007
  25. M. Spivakovsky, Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Ann. Math 131 (1990), 411-491 Zbl0719.14005MR1053487
  26. O. Zariski, P. Samuel, Commutative Algebra I, 28 (1958), Springer Verlag Zbl0313.13001
  27. O. Zariski, P. Samuel, Commutative Algebra II, (1960), Van Nostrand, Princeton Zbl0121.27801MR120249

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.