On the Jung method in positive characteristic
- [1] Université de Versailles, LAMA--UMR 8100 du CNRS, 45 avenue des États-Unis, Bâtiment Fermat, 78035 Versailles (France)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 4, page 1237-1258
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPiltant, Olivier. "On the Jung method in positive characteristic." Annales de l’institut Fourier 53.4 (2003): 1237-1258. <http://eudml.org/doc/116066>.
@article{Piltant2003,
abstract = {Let $\overline\{X\}$ be a germ of normal surface with local ring $\overline\{R\}$ covering a
germ of regular surface $X$ with local ring $R$ of characteristic $p>0$. Given an
extension of valuation rings $W/V$ birationally dominating $\overline\{R\}/R$, we study the
existence of a new such pair of local rings $\overline\{R\}^\{\prime \}/R^\{\prime \}$ birationally dominating
$\overline\{R\}/R$, such that $R^\{\prime \}$ is regular and $\overline\{R\}^\{\prime \}$ has only toric
singularities. This is achieved when $W/V$ is defectless or when $[W:V ]$ is
equal to $p$},
affiliation = {Université de Versailles, LAMA--UMR 8100 du CNRS, 45 avenue des États-Unis, Bâtiment Fermat, 78035 Versailles (France)},
author = {Piltant, Olivier},
journal = {Annales de l’institut Fourier},
keywords = {valuations; coverings; resolution of singularities},
language = {eng},
number = {4},
pages = {1237-1258},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the Jung method in positive characteristic},
url = {http://eudml.org/doc/116066},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Piltant, Olivier
TI - On the Jung method in positive characteristic
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 4
SP - 1237
EP - 1258
AB - Let $\overline{X}$ be a germ of normal surface with local ring $\overline{R}$ covering a
germ of regular surface $X$ with local ring $R$ of characteristic $p>0$. Given an
extension of valuation rings $W/V$ birationally dominating $\overline{R}/R$, we study the
existence of a new such pair of local rings $\overline{R}^{\prime }/R^{\prime }$ birationally dominating
$\overline{R}/R$, such that $R^{\prime }$ is regular and $\overline{R}^{\prime }$ has only toric
singularities. This is achieved when $W/V$ is defectless or when $[W:V ]$ is
equal to $p$
LA - eng
KW - valuations; coverings; resolution of singularities
UR - http://eudml.org/doc/116066
ER -
References
top- S. Abhyankar, On the ramification of algebraic functions, Amer. J. Math 77 (1955), 575-592 Zbl0064.27501MR71851
- S. Abhyankar, Local uniformization on algebraic surfaces over ground fields of characteristic , Ann. Math. 63 (1956), 491-526 Zbl0108.16803MR78017
- S. Abhyankar, On the valuations centered in a local domain, Amer. J. Math 78 (1956), 321-348 Zbl0074.26301MR82477
- S. Abhyankar, Simultaneous resolution for algebraic surfaces, Amer. J. Math 78 (1956), 761-790 Zbl0073.37902MR82722
- S. Abhyankar, Ramification theoretic methods in algebraic geometry, 43 (1959), Princeton University Press Zbl0101.38201MR105416
- S. Abhyankar, Tame Coverings and fundamental groups of algebraic varieties, Amer. J. Math 81 (1959), 46-94 Zbl0100.16401MR104675
- D. Abramovich, A. J. de Jong, Smoothness, semistability and toroidal geometry, J. Alg. Geom. 6 (1997), 789-801 Zbl0906.14006MR1487237
- F. Bogomolov, T. Pantev, Weak Hironaka theorem, Math. Res. Lett. 3 (1996), 299-307 Zbl0869.14007MR1397679
- S.D. Cutkosky, Local factorization and monomialization of morphisms, Astérisque 260 (1999) Zbl0941.14001MR1734239
- S.D. Cutkosky, Simultaneous resolution of singularities, Proc. Amer. Math. Soc 128 (2000), 1905-1910 Zbl0974.14010MR1646312
- S.D. Cutkosky, Generically finite morphisms and simultaneous resolution of singularities, (2001) Zbl1045.14008MR2011766
- S.D. Cutkosky, O. Piltant, Monomial resolutions of morphisms of algebraic surfaces. In honor of R. Hartshorne, Comm. Alg 28 (2000), 5935-5959 Zbl1003.14004MR1808613
- S.D. Cutkosky, O. Piltant, Ramification of valuations, (2002) Zbl1105.14015MR2038546
- A. Grothendieck, Revêtements étales et groupe fondamental, 224 (1971), Springer Verlag Zbl0234.14002MR354651
- A. Grothendieck, J.P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, 208 (1971), Springer-Verlag Zbl0216.33001MR316453
- R. Hartshorne, Algebraic geometry, 52 (1977), Springer-Verlag Zbl0367.14001MR463157
- A. J. de Jong, Smoothness, semistability and alterations, Publ. Math. IHES 83 (1996), 51-93 Zbl0916.14005
- H. Jung, Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderlichen in der Umgebung einer Stelle, Journal für Mathematik 133 (1908), 289-314 Zbl39.0493.01
- G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings I, 339 (1973), Springer Verlag Zbl0271.14017MR335518
- H. Knaf, and F.V. Kuhlmann, Abhyankar places admit local uniformization in any characteristic, (2001) Zbl1159.13301
- W. Krull, Galoissche Theorie bewerteter Körper, Sitzungsbereichte der Bayerschen Akademie der Wissenschaften, München (1930), 225-238 Zbl56.0141.02
- F.V. Kuhlmann, On local uniformization in arbitary characteristic I, (2000) MR1748629
- J. Lipman, Rational singularities with applications to algebraic surfaces and unique factorization, Publ. Math. IHES 36 (1969), 195-279 Zbl0181.48903MR276239
- J. Lipman, Introduction to resolution of singularities, Algebraic Geometry, Arcata, 1974 29 (1975), 187-230 Zbl0306.14007
- M. Spivakovsky, Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Ann. Math 131 (1990), 411-491 Zbl0719.14005MR1053487
- O. Zariski, P. Samuel, Commutative Algebra I, 28 (1958), Springer Verlag Zbl0313.13001
- O. Zariski, P. Samuel, Commutative Algebra II, (1960), Van Nostrand, Princeton Zbl0121.27801MR120249
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.