Properties of non-hermitian quantum field theories
- [1] Washington University, Department of Physics, Campus Box 1105, St. Louis, MO 63130 (USA)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 4, page 997-1008
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- R. F. Streater, A. S. Wightman, PCT, (1964), Benjamin, New York Zbl0135.44305MR161603
- C. M. Bender, K. A. Milton, S. S. Pinsky, L. M. Simmons Jr., A New Perturbative Approach to Nonlinear Problems, J. Math. Phys 30 (1989), 1447-1455 Zbl0684.34008MR1002247
- C. M. Bender, S. Boettcher, Real Spectra in Non-Hermitian hamiltonians Having PT Symmetry, Phys. Rev. Lett. 80 (1998), 5243-5246 Zbl0947.81018MR1627442
- C. M. Bender, S. Boettcher, P. N. Meisinger, PT-Symmetric Quantum Mechanics, J. Math. Phys. 40 (1999), 2201-2229 Zbl1057.81512MR1686605
- C. M. Bender, P. N. Meisinger, H. Yang, Calculation of the One-Point Green’s Function for a - Quantum Field Theory, Phys. Rev. D 63 (2001), 45001-1--45001-10
- C. M. Bender, S. Boettcher, H. F. Jones, P. N. Meisinger, M., Bound States of Non-Hermitian Quantum Field Theories, Phys. Lett. A 291 (2001), 197-202 Zbl0983.81045MR1876901
- C. M. Bender, G. V. Dunne, P. N. Meisinger, M., Quantum Complex Henon-Heiles Potentials, Phys. Lett. A 281 (2001), 311-316 Zbl0984.81042MR2046920
- C. M. Bender, S. Boettcher, P. N. Meisinger, Q. Wang, Two-Point Green's Function in PT-Symmetric Theories, Phys. Lett. A 302 (2002), 286-290 Zbl0998.81023MR1958668
- C. M. Bender, D. C. Brody, H. F. Jones, Complex Extension of Quantum Mechanics, quant-ph 0208076 (2002) Zbl1267.81234MR1950305
- C. M. Bender, M. V. Berry, A. Mandilara, Generalized Symmetry and Real Spectra, J. Phys. A, Math. Gen. 35 (2002), 467-471 Zbl1066.81537MR1928842
- P. Dorey, C. Dunning, R. Tateo, The ODE/IM correspondence PT-symmetric quantum mechanics, J. Phys. A, Math. Gen. 34 (2002), 391-400 and 5679--5704 Zbl1002.82011MR1857169
- G. S. Japaridze, Space of state vectors in PT-symmetric quantum mechanics, J. Phys. A 35 (2002), 1709-1718 Zbl1010.81019MR1891621
- F. Pham, E. Delabaere, Eigenvalues of complex Hamiltonians with PT-symmetry, Phys. Lett. A 250 (1998), 29-32 MR1742960
- K. C. Shin, On the reality of the eigenvalues for a class of PT-symmetric oscillators, Comm. Math. Phys. 229 (2002), 543-564 Zbl1017.34083MR1924367