Functional models and asymptotically orthonormal sequences
Isabelle Chalendar[1]; Emmanuel Fricain[1]; Dan Timotin[2]
- [1] Université Claude Bernard Lyon I, Institut Girard Desargues, UFR de Mathématiques, 69622 Villeurbanne Cedex (France)
- [2] Institute of Mathematics of the Romanian Academy, PO Box 1-764, Bucharest 70700 (Romania)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 5, page 1527-1549
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topChalendar, Isabelle, Fricain, Emmanuel, and Timotin, Dan. "Functional models and asymptotically orthonormal sequences." Annales de l’institut Fourier 53.5 (2003): 1527-1549. <http://eudml.org/doc/116080>.
@article{Chalendar2003,
abstract = {Suppose $H^2$ is the Hardy space of the unit disc in the complex plane, while $\Theta $ is
an inner function. We give conditions for a sequence of normalized reproducing kernels in
the model space $K_\Theta =H^2\ominus \Theta H^2$ to be asymptotically close to an
orthonormal sequence. The completeness problem is also investigated.},
affiliation = {Université Claude Bernard Lyon I, Institut Girard Desargues, UFR de Mathématiques, 69622 Villeurbanne Cedex (France); Université Claude Bernard Lyon I, Institut Girard Desargues, UFR de Mathématiques, 69622 Villeurbanne Cedex (France); Institute of Mathematics of the Romanian Academy, PO Box 1-764, Bucharest 70700 (Romania)},
author = {Chalendar, Isabelle, Fricain, Emmanuel, Timotin, Dan},
journal = {Annales de l’institut Fourier},
keywords = {Hardy space; functional model; asymptotically orthornormal sequence; asymptotically orthonormal sequence},
language = {eng},
number = {5},
pages = {1527-1549},
publisher = {Association des Annales de l'Institut Fourier},
title = {Functional models and asymptotically orthonormal sequences},
url = {http://eudml.org/doc/116080},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Chalendar, Isabelle
AU - Fricain, Emmanuel
AU - Timotin, Dan
TI - Functional models and asymptotically orthonormal sequences
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 5
SP - 1527
EP - 1549
AB - Suppose $H^2$ is the Hardy space of the unit disc in the complex plane, while $\Theta $ is
an inner function. We give conditions for a sequence of normalized reproducing kernels in
the model space $K_\Theta =H^2\ominus \Theta H^2$ to be asymptotically close to an
orthonormal sequence. The completeness problem is also investigated.
LA - eng
KW - Hardy space; functional model; asymptotically orthornormal sequence; asymptotically orthonormal sequence
UR - http://eudml.org/doc/116080
ER -
References
top- I. Boricheva, Geometric properties of projections of reproducing kernels on -invariant subspaces of , Journal of Functional Analysis 161 (1999), 397-417 Zbl0939.30005MR1674647
- D. Clark, One dimensional perturbations of restricted shifts, J. Analyse Math 25 (1972), 169-191 Zbl0252.47010MR301534
- E. Fricain, Bases of reproducing kernels in model spaces, J. Operator Theory 46 (2001), 517-543 Zbl0995.46021MR1897152
- P. Gorkin, H.-M. Lingenberg, R. Mortini, Homeomorphic disks in the spectrum of , Indiana Univ. Math. J 39 (1990), 961-983 Zbl0703.46036MR1087181
- H. Hedenmalm, Thin interpolating sequences and three algebras of bounded functions, Proc. Amer. Math. Soc 99 (1987), 489-495 Zbl0617.46059MR875386
- E. Hewitt, K. Stromberg, Real and Abstract Analysis, (1969), Springer-Verlag, Berlin-Heidelberg-New York Zbl0225.26001MR367121
- S.V. Hru#x0161;#x010D;ev, N.K. Nikolski, B.S. Pavlov, Unconditional bases of exponentials and of reproducing kernels, Complex Analysis and Spectral Theory (1981), 214-335, Springer-Verlag, Berlin Heidelberg New-York Zbl0466.46018
- N. Levinson, Gap and Density Theorems, 26 (1940), Amer. Math. Soc., New-York Zbl0145.08003
- N.K. Nikolski, Treatise on the Shift Operator, vol. 273 (1986), Springer-Verlag, Berlin Zbl0587.47036MR827223
- N.K. Nikolski, Operators, Functions and Systems: An Easy Reading. Model Operators and Systems, 93, Volume 2 (2002), American Mathematical Society Zbl1007.47002MR1892647
- N.K. Nikolski, A.L. Volberg, Tangential and approximate free interpolation, Analysis and partial differential equations (1990), 277-299, Dekker, New-York Zbl0697.30036
- R.E. Paley, N. Wiener, Fourier Transforms in the Complex Domain, vol. 19 (1934), Amer. Math. Soc., Providence Zbl0011.01601
- C. Sundberg, T.H. Wolff, Interpolating sequences for , Trans. Amer. Math. Soc 276 (1983), 551-581 Zbl0536.30025MR688962
- B. Sz-Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Spaces, (1970), North-Holland Publishing Co., Amsterdam-London Zbl0201.45003MR275190
- A.L. Volberg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang and D. Sarason, J. Operator Theory 7 (1982), 209-218 Zbl0489.47015MR658609
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.