Functional models and asymptotically orthonormal sequences

Isabelle Chalendar[1]; Emmanuel Fricain[1]; Dan Timotin[2]

  • [1] Université Claude Bernard Lyon I, Institut Girard Desargues, UFR de Mathématiques, 69622 Villeurbanne Cedex (France)
  • [2] Institute of Mathematics of the Romanian Academy, PO Box 1-764, Bucharest 70700 (Romania)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 5, page 1527-1549
  • ISSN: 0373-0956

Abstract

top
Suppose H 2 is the Hardy space of the unit disc in the complex plane, while Θ is an inner function. We give conditions for a sequence of normalized reproducing kernels in the model space K Θ = H 2 Θ H 2 to be asymptotically close to an orthonormal sequence. The completeness problem is also investigated.

How to cite

top

Chalendar, Isabelle, Fricain, Emmanuel, and Timotin, Dan. "Functional models and asymptotically orthonormal sequences." Annales de l’institut Fourier 53.5 (2003): 1527-1549. <http://eudml.org/doc/116080>.

@article{Chalendar2003,
abstract = {Suppose $H^2$ is the Hardy space of the unit disc in the complex plane, while $\Theta $ is an inner function. We give conditions for a sequence of normalized reproducing kernels in the model space $K_\Theta =H^2\ominus \Theta H^2$ to be asymptotically close to an orthonormal sequence. The completeness problem is also investigated.},
affiliation = {Université Claude Bernard Lyon I, Institut Girard Desargues, UFR de Mathématiques, 69622 Villeurbanne Cedex (France); Université Claude Bernard Lyon I, Institut Girard Desargues, UFR de Mathématiques, 69622 Villeurbanne Cedex (France); Institute of Mathematics of the Romanian Academy, PO Box 1-764, Bucharest 70700 (Romania)},
author = {Chalendar, Isabelle, Fricain, Emmanuel, Timotin, Dan},
journal = {Annales de l’institut Fourier},
keywords = {Hardy space; functional model; asymptotically orthornormal sequence; asymptotically orthonormal sequence},
language = {eng},
number = {5},
pages = {1527-1549},
publisher = {Association des Annales de l'Institut Fourier},
title = {Functional models and asymptotically orthonormal sequences},
url = {http://eudml.org/doc/116080},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Chalendar, Isabelle
AU - Fricain, Emmanuel
AU - Timotin, Dan
TI - Functional models and asymptotically orthonormal sequences
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 5
SP - 1527
EP - 1549
AB - Suppose $H^2$ is the Hardy space of the unit disc in the complex plane, while $\Theta $ is an inner function. We give conditions for a sequence of normalized reproducing kernels in the model space $K_\Theta =H^2\ominus \Theta H^2$ to be asymptotically close to an orthonormal sequence. The completeness problem is also investigated.
LA - eng
KW - Hardy space; functional model; asymptotically orthornormal sequence; asymptotically orthonormal sequence
UR - http://eudml.org/doc/116080
ER -

References

top
  1. I. Boricheva, Geometric properties of projections of reproducing kernels on z * -invariant subspaces of H 2 , Journal of Functional Analysis 161 (1999), 397-417 Zbl0939.30005MR1674647
  2. D. Clark, One dimensional perturbations of restricted shifts, J. Analyse Math 25 (1972), 169-191 Zbl0252.47010MR301534
  3. E. Fricain, Bases of reproducing kernels in model spaces, J. Operator Theory 46 (2001), 517-543 Zbl0995.46021MR1897152
  4. P. Gorkin, H.-M. Lingenberg, R. Mortini, Homeomorphic disks in the spectrum of H , Indiana Univ. Math. J 39 (1990), 961-983 Zbl0703.46036MR1087181
  5. H. Hedenmalm, Thin interpolating sequences and three algebras of bounded functions, Proc. Amer. Math. Soc 99 (1987), 489-495 Zbl0617.46059MR875386
  6. E. Hewitt, K. Stromberg, Real and Abstract Analysis, (1969), Springer-Verlag, Berlin-Heidelberg-New York Zbl0225.26001MR367121
  7. S.V. Hru#x0161;#x010D;ev, N.K. Nikolski, B.S. Pavlov, Unconditional bases of exponentials and of reproducing kernels, Complex Analysis and Spectral Theory (1981), 214-335, Springer-Verlag, Berlin Heidelberg New-York Zbl0466.46018
  8. N. Levinson, Gap and Density Theorems, 26 (1940), Amer. Math. Soc., New-York Zbl0145.08003
  9. N.K. Nikolski, Treatise on the Shift Operator, vol. 273 (1986), Springer-Verlag, Berlin Zbl0587.47036MR827223
  10. N.K. Nikolski, Operators, Functions and Systems: An Easy Reading. Model Operators and Systems, 93, Volume 2 (2002), American Mathematical Society Zbl1007.47002MR1892647
  11. N.K. Nikolski, A.L. Volberg, Tangential and approximate free interpolation, Analysis and partial differential equations (1990), 277-299, Dekker, New-York Zbl0697.30036
  12. R.E. Paley, N. Wiener, Fourier Transforms in the Complex Domain, vol. 19 (1934), Amer. Math. Soc., Providence Zbl0011.01601
  13. C. Sundberg, T.H. Wolff, Interpolating sequences for Q A B , Trans. Amer. Math. Soc 276 (1983), 551-581 Zbl0536.30025MR688962
  14. B. Sz-Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Spaces, (1970), North-Holland Publishing Co., Amsterdam-London Zbl0201.45003MR275190
  15. A.L. Volberg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang and D. Sarason, J. Operator Theory 7 (1982), 209-218 Zbl0489.47015MR658609

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.