Intrinsic curvatures in analytic-geometric categories

Andreas Bernig[1]; Ludwig Bröcker[2]

  • [1] Universität Freiburg, Institut für Mathematik, Eckerstr. 1, 79104 Freiburg (Allemagne)
  • [2] Universität Münster, SFB-47 Geometrische Strukturen, Hittorfstr. 27, 48149 Münster (Allemagne)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 6, page 1897-1924
  • ISSN: 0373-0956

Abstract

top
Two types of curvatures are associated to a compact, definable subset of a real analytic Riemannian manifold. If the manifold has constant curvature, there are some linear relations between these measures. As application, a kinematic formula is proved, local densities are defined and volumes of regular simplexes are studied.

How to cite

top

Bernig, Andreas, and Bröcker, Ludwig. "Courbures intrinsèques dans les catégories analytico-géométriques." Annales de l’institut Fourier 53.6 (2003): 1897-1924. <http://eudml.org/doc/116088>.

@article{Bernig2003,
abstract = {Deux types de courbures sont associés à un sous-ensemble compact et définissable d'une variété riemannienne analytique réelle. Si la variété est de courbure constante, il y a des relations linéaires entre ces mesures. Comme application, nous démontrons une formule cinématique, définissons des densités locales, et nous étudions les volumes des simplexes réguliers.},
affiliation = {Universität Freiburg, Institut für Mathematik, Eckerstr. 1, 79104 Freiburg (Allemagne); Universität Münster, SFB-47 Geometrische Strukturen, Hittorfstr. 27, 48149 Münster (Allemagne)},
author = {Bernig, Andreas, Bröcker, Ludwig},
journal = {Annales de l’institut Fourier},
keywords = {curvatures; subanalytic spaces; kinematic formula; densities},
language = {fre},
number = {6},
pages = {1897-1924},
publisher = {Association des Annales de l'Institut Fourier},
title = {Courbures intrinsèques dans les catégories analytico-géométriques},
url = {http://eudml.org/doc/116088},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Bernig, Andreas
AU - Bröcker, Ludwig
TI - Courbures intrinsèques dans les catégories analytico-géométriques
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 6
SP - 1897
EP - 1924
AB - Deux types de courbures sont associés à un sous-ensemble compact et définissable d'une variété riemannienne analytique réelle. Si la variété est de courbure constante, il y a des relations linéaires entre ces mesures. Comme application, nous démontrons une formule cinématique, définissons des densités locales, et nous étudions les volumes des simplexes réguliers.
LA - fre
KW - curvatures; subanalytic spaces; kinematic formula; densities
UR - http://eudml.org/doc/116088
ER -

References

top
  1. K. Bekka, D. Trotman, On metrics properties of stratified sets, Manuscripta Math 111 (2003), 71-95 Zbl1033.58005MR1981597
  2. A. Bernig, Scalar Curvature of definable Alexandrov spaces, Advances in Geometry 2 (2002), 29-55 Zbl1027.53041MR1880000
  3. A. Bernig, Scalar Curvature of definable CAT spaces, Advances in Geometry 3 (2003), 23-43 Zbl1028.53031MR1956586
  4. A. Bernig, L. Bröcker, Lipschitz-Killing invariants, Mathematische Nachrichten 245 (2002), 5-25 Zbl1074.53064MR1936341
  5. J. Bochnak, M. Coste, M.-F. Roy, Géométrie Algébrique Réelle, (1987), Springer-Verlag Zbl0633.14016MR949442
  6. M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, (1999), Springer-Verlag Zbl0988.53001MR1744486
  7. L. Bröcker, M. Kuppe, Integral geometry of tame sets, Geom. Dedicata 82 (2000), 285-323 Zbl1023.53057MR1789065
  8. J. Cheeger, W. Müller, R. Schrader, On the curvature of piecewise flat spaces, Comm. Math. Phys 92 (1984), 405-454 Zbl0559.53028MR734226
  9. J. Cheeger, W. Müller, R. Schrader, Kinematic and tube formulas for piecewise flat spaces, Indiana Univ. Math. I 35 (1986), 737-754 Zbl0615.53058MR865426
  10. G. Comte, Équisingularité réelle : invariants locaux et conditions de régularité, (2001) 
  11. G. Comte, Y. Yomdin, Tame Geometry with Applications in Smooth Analysis Zbl1076.14079
  12. M. Coste, An introduction to o-minimal geometry, (2000) 
  13. H. Federer, Geometric Measure Theory, (1968), Springer Verlag, Berlin-Heidelberg-New York Zbl0176.00801MR257325
  14. M. Ferrarotti, About geodesic distance on Riemannian stratified spaces, (1997) Zbl0890.32015
  15. J. Fu, Curvature measures of subanalytic sets, Amer. J. Math 116 (1994), 819-880 Zbl0818.53091MR1287941
  16. J. Fu, Kinematic formulas in integral geometry, Indiana Univ. Math. J 39 (1990), 1115-1154 Zbl0703.53059MR1087187
  17. J. Fu, Monge-Ampère functions I, Indiana Univ. Math. J 38 (1989), 745-771 Zbl0668.49010MR1017333
  18. M. Goresky, R. Macpherson, Stratified Morse Theory, (1988), Springer Verlag, Berlin-Heidelberg Zbl0639.14012MR932724
  19. H. Hamm, On stratified Morse theory, Topology 38 (1999), 427-438 Zbl0936.58007MR1660321
  20. M. Kashiwara, P. Schapira, Sheaves on Manifolds, (1990), Springer Verlag, Berlin-Heidelberg-New York Zbl0709.18001MR1074006
  21. M. Kuppe, Integralgeometrie Whitney-Stratifizierter Mengen, Dissertation Münster (1999) Zbl0946.53041
  22. K. Kurdyka, G. Raby, Densité des ensembles sous-analytiques, Ann. Inst. Fourier 39 (1989), 753-771 Zbl0673.32015MR1030848
  23. L. Van Den Dries, Tame Topology and O-Minimal Structures, 248 (1998), Cambridge University Press Zbl0953.03045MR1633348
  24. L. Van Den Dries, C. Miller, Geometric Categories and o-minimal structures, Duke Math. Journal 84 (1996), 497-540 Zbl0889.03025MR1404337
  25. L.A. Santaló, Introduction to Integral Geometry, (1953), Publications de l'Institut Mathématique de l'Université de Nanc, Paris Zbl0052.39403MR60840
  26. J. Schürmann, Topology of singular spaces and constructible sheaves Zbl1041.55001
  27. R. Sulanke, P. Wintgen, Differentialgeometrie und Faserbündel, (1972), Birkhäuser Verlag, Basel-Stuttgart Zbl0327.53020MR413153
  28. D. Trotman, Espaces stratifiés réels, Stratifications, singularities and differential equations (travaux en cours) 55 (1997), 93-107 Zbl0883.32025
  29. H. Weyl, On the volume of tubes, Amer. J. Math 61 (1939), 461-472 MR1507388
  30. M. Zähle, Curvature and currents for unions of sets with positive reach, Geom. Dedicata 23 (1987), 155-171 Zbl0627.53053MR892398
  31. M. Zähle, Approximation and characterization of generalized Lipschitz-Killing curvatures, Ann. Global Anal. Geom 8 (1990), 249-260 Zbl0718.53052MR1089237

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.