On reduction of Hilbert-Blumenthal varieties
Chia-Fu Yu[1]
- [1] National Tsing-Hua University, National Center for Theoretical Sciences, 3rd General Bldg, 101 Sec. Kuang-Fu road, Tsinchu 30043 (Taiwan)
 
Annales de l'Institut Fourier (2003)
- Volume: 53, Issue: 7, page 2105-2154
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topYu, Chia-Fu. "On reduction of Hilbert-Blumenthal varieties." Annales de l'Institut Fourier 53.7 (2003): 2105-2154. <http://eudml.org/doc/116095>.
@article{Yu2003,
	abstract = {Let $O_\{\{\bf F\}\}$ be the ring of integers of a totally real field $\{\bf F\}$ of degree
$g$. We study the reduction of the moduli space of separably polarized abelian $O_\{\{\bf F\}\}$-varieties of dimension $g$ modulo $p$ for a fixed prime $p$. The invariants and
related conditions for the objects in the moduli space are discussed. We construct a
scheme-theoretic stratification by $a$-types on the Rapoport locus and study the relation
with the slope stratification. In particular, we recover the main results of Goren and
Oort [J. Alg. Geom., 2000] on the stratifications when $p$ is unramified in $O_\{\{\bf F\}\}$. We also prove the strong Grothendieck conjecture for the moduli space in some
restricted cases, particularly when $p$ is totally ramified in $O_\{\{\bf F\}\}$.},
	affiliation = {National Tsing-Hua University, National Center for Theoretical Sciences, 3rd General Bldg, 101 Sec. Kuang-Fu road, Tsinchu 30043 (Taiwan)},
	author = {Yu, Chia-Fu},
	journal = {Annales de l'Institut Fourier},
	keywords = {Hilbert-Blumenthal varieties; Dieudonné modules; stratifications; deformations},
	language = {eng},
	number = {7},
	pages = {2105-2154},
	publisher = {Association des Annales de l'Institut Fourier},
	title = {On reduction of Hilbert-Blumenthal varieties},
	url = {http://eudml.org/doc/116095},
	volume = {53},
	year = {2003},
}
TY  - JOUR
AU  - Yu, Chia-Fu
TI  - On reduction of Hilbert-Blumenthal varieties
JO  - Annales de l'Institut Fourier
PY  - 2003
PB  - Association des Annales de l'Institut Fourier
VL  - 53
IS  - 7
SP  - 2105
EP  - 2154
AB  - Let $O_{{\bf F}}$ be the ring of integers of a totally real field ${\bf F}$ of degree
$g$. We study the reduction of the moduli space of separably polarized abelian $O_{{\bf F}}$-varieties of dimension $g$ modulo $p$ for a fixed prime $p$. The invariants and
related conditions for the objects in the moduli space are discussed. We construct a
scheme-theoretic stratification by $a$-types on the Rapoport locus and study the relation
with the slope stratification. In particular, we recover the main results of Goren and
Oort [J. Alg. Geom., 2000] on the stratifications when $p$ is unramified in $O_{{\bf F}}$. We also prove the strong Grothendieck conjecture for the moduli space in some
restricted cases, particularly when $p$ is totally ramified in $O_{{\bf F}}$.
LA  - eng
KW  - Hilbert-Blumenthal varieties; Dieudonné modules; stratifications; deformations
UR  - http://eudml.org/doc/116095
ER  - 
References
top- E. Bachmat, E. Z. Goren, On the non-ordinary locus in Hilbert-Blumenthal surfaces, Math. Ann. 313 (1999), 475-506 Zbl0919.14014MR1678541
 - C.-L. Chai, Newton polygons as lattice points, Amer. J. Math. 122 (2000), 967-990 Zbl1057.11506MR1781927
 - C.-L. Chai, P. Norman, Bad reduction of the Siegel moduli scheme of genus two with -level structure, Amer. J. Math. 112 (1990), 1003-1071 Zbl0734.14010MR1081813
 - A.J. de Jong, F. Oort, Purity of the stratification by Newton polygons, J. Amer. Math. Soc. 13 (2000), 209-241 Zbl0954.14007MR1703336
 - P. Deligne, G. Pappas, Singularités des espaces de modules de Hilbert en caractéristiques divisant le discriminant, Compositio Math. 90 (1994), 59-79 Zbl0826.14027MR1266495
 - E.Z. Goren, F. Oort, Stratifications of Hilbert modular varieties in positive characteristic, J. Algebraic Geom. 9 (2000), 111-154 Zbl0973.14010MR1713522
 - A. Grothendieck, Groupes de Barsotti-Tate et Cristaux de Dieudonné, (1974), Les Presses de l'Université de Montréal Zbl0331.14021MR417192
 - R. E. Kottwitz, Isocrystal with additional structure, Compositio Math. 56 (1985), 201-220 Zbl0597.20038MR809866
 - R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), 373-444 Zbl0796.14014MR1124982
 - K.-Z. Li, F. Oort, Moduli of Supersingular Abelian Varieties, vol. 1680 (1998), Springer-Verlag Zbl0920.14021MR1611305
 - W. Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, 264 (1972), Springer-Verlag Zbl0243.14013MR347836
 - D. Mumford, Abelian Varieties, (1974), Oxford University Press Zbl0223.14022
 - P. Norman, An algorithm for computing moduli of abelian varieties, Ann. Math. 101 (1975), 499-509 Zbl0309.14031MR389928
 - P. Norman, F. Oort, Moduli of abelian varieties, Ann. Math. 112 (1980), 413-439 Zbl0483.14010MR595202
 - F. Oort, Moduli of abelian varieties and Newton polygons, C. R. Acad. Sci. Paris, Sér. I Math. 312 (1991), 385-389 Zbl0734.14016MR1096617
 - F. Oort, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. Math. 152 (2000), 183-206 Zbl0991.14016MR1792294
 - F. Oort, Newton Polygon strata in the moduli space of abelian varieties, Moduli of Abelian Varieties 195 (2001), 417-440, Birkhäuser Zbl1086.14037
 - F. Oort, Endomorphism algebras of abelian varieties, Algebraic geometry and commutative algebra, in honor of M. Nagata (1988), 469-502 Zbl0697.14029MR977774
 - G. Pappas, Arithmetic models for Hilbert modular varieties, Compositio Math. 98 (1995), 43-76 Zbl0890.14010MR1353285
 - M. Rapoport, Compactifications de l'espaces de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978), 255-335 Zbl0386.14006MR515050
 - M. Rapoport, M. Richartz, On the classification and specialization of F-isocrystals with additional structure, Compositio Math. 103 (1996), 153-181 Zbl0874.14008MR1411570
 - M. Rapoport, Th. Zink, Period Spaces for -divisible groups, 141 (1996), Princeton Univ. Press Zbl0873.14039MR1393439
 - J.-P. Serre, Local fields, 67 (1979), Springer-Verlag Zbl0423.12016MR554237
 - C.-F. Yu, On the supersingular locus of Hilbert-Blumenthal 4-folds, J. Alg. Geom. 12 (2003), 653-698 Zbl1059.14031MR1993760
 - C.-F. Yu, Lifting abelian varieties with additional structures, Math. Z. 242 (2002), 427-441 Zbl1051.14052MR1985459
 - T. Zink, Cartiertheorie kommutativer formaler Gruppen, (1984), Teubner, Leipzig Zbl0578.14039MR767090
 - T. Zink, The display of a formal -divisible groups, Cohomologies -adiques et applications arithmétiques 278 (2002), 127-248, SMF Zbl1008.14008
 - T. Zink, Isogenieklassen von Punkten von Shimuramannigfaltigkeiten mit Werten in einem endlichen Körper, Math. Nachr. 112 (1983), 103-124 Zbl0604.14029MR726854
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.