On the invariants of pencils of binary quintics

Matthias Meulien[1]

  • [1] Chennai Mathematical Institute, 92 G. N. Chetty Road, Chennai 600 017 (Inde)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 1, page 21-51
  • ISSN: 0373-0956

Abstract

top
We describe the invariant algebra of the natural action of SL 2 on pencils of binary quintic forms.

How to cite

top

Meulien, Matthias. "Sur les invariants des pinceaux de formes quintiques binaires." Annales de l’institut Fourier 54.1 (2004): 21-51. <http://eudml.org/doc/116107>.

@article{Meulien2004,
abstract = {On décrit l’algèbre des invariants de l’action naturelle du groupe $\{\rm SL\}_2$ sur les pinceaux de formes quintiques binaires.},
affiliation = {Chennai Mathematical Institute, 92 G. N. Chetty Road, Chennai 600 017 (Inde)},
author = {Meulien, Matthias},
journal = {Annales de l’institut Fourier},
keywords = {geometric invariant theory; binary quintic forms; rational quintic; space curves; Poincaré series; Gorenstein rings},
language = {fre},
number = {1},
pages = {21-51},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sur les invariants des pinceaux de formes quintiques binaires},
url = {http://eudml.org/doc/116107},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Meulien, Matthias
TI - Sur les invariants des pinceaux de formes quintiques binaires
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 1
SP - 21
EP - 51
AB - On décrit l’algèbre des invariants de l’action naturelle du groupe ${\rm SL}_2$ sur les pinceaux de formes quintiques binaires.
LA - fre
KW - geometric invariant theory; binary quintic forms; rational quintic; space curves; Poincaré series; Gorenstein rings
UR - http://eudml.org/doc/116107
ER -

References

top
  1. G. E. Andrews, The theory of partitions, vol. 2 (1976), Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam Zbl0371.10001MR557013
  2. N. Bourbaki, Algèbre commutative, (1998), Masson Zbl1101.13300
  3. J.-F. Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math 88 (1987), 65-68 Zbl0619.14029MR877006
  4. D. A. Buchsbaum, D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension, Amer. J. Math 99 (1977), 447-485 Zbl0373.13006MR453723
  5. J. H. Grace, A. Young, The algebra of invariants, (1903), Cambridge University Press Zbl34.0114.01
  6. P. Griffiths, J. Harris, Principles of algebraic geometry, (1994), Wiley Classics Library, New York Zbl0836.14001MR1288523
  7. F. Knop, Der kanonische Modul eines Invariantenrings, J. Algebra 127 (1989), 40-54 Zbl0716.20021MR1029400
  8. L. Manivel, An extension of the Cayley-Sylvester formula, (2002) 
  9. M. Meulien, Sur les invariants des pinceaux de quintiques binaire, (2002) 
  10. T. W. Moore, On the invariant combinants of two binary quintics, Amer. J. 50 (1928), 415-430 Zbl54.0135.01MR1506678
  11. S. Mukai, H. Umemura, Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto, 1982) (1983), 490-518, Springer, Berlin Zbl0526.14006MR726439
  12. D. Mumford, Geometric invariant theory, vol. 34 (1965), Springer-Verlag, Berlin Zbl0147.39304MR214602
  13. P. E. Newstead, Invariants of binary cubics, Math. Proc. Camb. Phil. Soc 89 (1981), 201-209 Zbl0458.14006MR600237
  14. V. L. Popov, Groups, generators, syzygies, and orbits in invariant theory, (1992), American Mathematical Society Zbl0754.13005MR1171012
  15. G. Salmon, Traité d'algèbre supérieure, (1890), Gauthier-Villars et Fils, Paris Zbl22.0124.03
  16. T. Shioda, On the graded ring of invariants of binary octavics, Amer. J. Math 89 (1967), 1022-1046 Zbl0188.53304MR220738
  17. T. Springer, On the invariant theory of S U 2 , Indag. Math. 42 (1980), 339-345 Zbl0449.22017MR587060
  18. G. Trautmann, Poncelet curves and associated theta characteristics, Expo. Math 6 (1988), 29-64 Zbl0646.14025MR927588
  19. J.-L. Verdier, Applications harmoniques de S 2 dans S 4 . II., Harmonic mappings, twistors, and -models (Luminy, 1986) (1988), 124-147, World Sci. Publishing, Singapore Zbl1043.58514MR982527
  20. J. Weyman, Gordan ideals in the theory of binary forms, J. Algebra 161 (1993), 370-391 Zbl0811.13011MR1247362

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.