The rational homotopy type of configuration spaces of two points
Pascal Lambrechts[1]; Don Stanley
- [1] Université de Louvain, Institut Mathématique, 2 chemin du Cyclotron, 1348 Louvain-la-Neuve, (Belgique), University of Ottawa, Department of Mathematics and Statistics, 585 King Edward Ave., Ottawa, ON K1N 6N5 (CANADA)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 4, page 1029-1052
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLambrechts, Pascal, and Stanley, Don. "The rational homotopy type of configuration spaces of two points." Annales de l’institut Fourier 54.4 (2004): 1029-1052. <http://eudml.org/doc/116129>.
@article{Lambrechts2004,
abstract = {We prove that the rational homotopy type of the configuration space of two points in a
$2$-connected closed manifold depends only on the rational homotopy type of that manifold
and we give a model in the sense of Sullivan of that configuration space. We also study
the formality of configuration spaces.},
affiliation = {Université de Louvain, Institut Mathématique, 2 chemin du Cyclotron, 1348 Louvain-la-Neuve, (Belgique), University of Ottawa, Department of Mathematics and Statistics, 585 King Edward Ave., Ottawa, ON K1N 6N5 (CANADA)},
author = {Lambrechts, Pascal, Stanley, Don},
journal = {Annales de l’institut Fourier},
keywords = {configuration space; Sullivan model; rational homotopy type; Sullivan theory; CDGA-model; formal},
language = {eng},
number = {4},
pages = {1029-1052},
publisher = {Association des Annales de l'Institut Fourier},
title = {The rational homotopy type of configuration spaces of two points},
url = {http://eudml.org/doc/116129},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Lambrechts, Pascal
AU - Stanley, Don
TI - The rational homotopy type of configuration spaces of two points
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 4
SP - 1029
EP - 1052
AB - We prove that the rational homotopy type of the configuration space of two points in a
$2$-connected closed manifold depends only on the rational homotopy type of that manifold
and we give a model in the sense of Sullivan of that configuration space. We also study
the formality of configuration spaces.
LA - eng
KW - configuration space; Sullivan model; rational homotopy type; Sullivan theory; CDGA-model; formal
UR - http://eudml.org/doc/116129
ER -
References
top- F. Cohen, L. Taylor, Computations of Gelfand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, Geometric applications of homotopy theory I (Proc. Conf., Evanston 1977) 657 (1978), 106-143, Springer, Berlin Zbl0398.55004
- P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math 29 (1975), 245-274 Zbl0312.55011MR382702
- Y. Félix, S. Halperin, J.-C. Thomas, Rational homotopy theory, vol. 210 (2001), Springer-Verlag Zbl0961.55002MR1802847
- W. Fulton, R. Mac Pherson, A compactification of configuration spaces, Annals of Math 139 (1994), 183-225 Zbl0820.14037MR1259368
- J. Klein, Poincaré duality embeddings and fiberwise homotopy theory, Topology 38 (1999), 597-620 Zbl0928.57028MR1670412
- J. Klein, Poincaré duality embeddings and fiberwise homotopy theory, II, Quart. Jour. Math. Oxford 53 (2002), 319-335 Zbl1030.57036MR1930266
- I. Kriz, On the rational homotopy type of configuration spaces, Annals of Math 139 (1994), 227-237 Zbl0829.55008MR1274092
- P. Lambrechts, Cochain model for thickenings and its application to rational LS-category, Manuscripta Math 103 (2000), 143-160 Zbl0964.55013MR1796311
- P. Lambrechts, D. Stanley, Algebraic models of the complement of a subpolyhedron in a closed manifold (submitted)
- P. Lambrechts, D. Stanley, module models for the configuration space of points (in preparation) Zbl1069.55006
- N. Levitt, Spaces of arcs and configuration spaces of manifolds, Topology 34 (1995), 217-230 Zbl0845.57021MR1308497
- J. Milnor, D. Husemoller, Symmetric bilinear forms, Band 73 (1973), Springer-Verlag Zbl0292.10016MR506372
- B. Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996), 1057-1067 Zbl0857.57025MR1404924
- J. Stasheff, Rational Poincaré duality spaces, Illinois J. Math 27 (1983), 104-109 Zbl0488.55010MR684544
- D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977), 269-331 Zbl0374.57002MR646078
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.