A 3-polyGEM of nilpotent modulo 2 cohomology

Donghua Jiang[1]

  • [1] LAGA, Institut Galilée, Université Paris Nord, 93430 Villetaneuse (France)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 4, page 1053-1072
  • ISSN: 0373-0956

Abstract

top
We give a counter-example of the following conjecture: if the reduced mod 2 cohomology of any 1-connected polyGEM is of finite type and is not trivial, then it contains at least one element of infinite height, i.e., non nilpotent.

How to cite

top

Jiang, Donghua. "Un 3-polyGEM de cohomologie modulo 2 nilpotente." Annales de l’institut Fourier 54.4 (2004): 1053-1072. <http://eudml.org/doc/116130>.

@article{Jiang2004,
abstract = {On construit un contre-exemple de la conjecture suivante : si la cohomologie modulo 2 réduite d'un polyGEM 1-connexe quelconque est de type fini et si elle n'est pas réduite à (0), alors elle contient au moins un élément non nilpotent.},
affiliation = {LAGA, Institut Galilée, Université Paris Nord, 93430 Villetaneuse (France)},
author = {Jiang, Donghua},
journal = {Annales de l’institut Fourier},
keywords = {polyGEM; Milgram spaces; Eilenberg-Moore spectral sequences},
language = {fre},
number = {4},
pages = {1053-1072},
publisher = {Association des Annales de l'Institut Fourier},
title = {Un 3-polyGEM de cohomologie modulo 2 nilpotente},
url = {http://eudml.org/doc/116130},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Jiang, Donghua
TI - Un 3-polyGEM de cohomologie modulo 2 nilpotente
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 4
SP - 1053
EP - 1072
AB - On construit un contre-exemple de la conjecture suivante : si la cohomologie modulo 2 réduite d'un polyGEM 1-connexe quelconque est de type fini et si elle n'est pas réduite à (0), alors elle contient au moins un élément non nilpotent.
LA - fre
KW - polyGEM; Milgram spaces; Eilenberg-Moore spectral sequences
UR - http://eudml.org/doc/116130
ER -

References

top
  1. E.H. Brown, F.P. Peterson, Whitehead products and cohomology operations, Quart. J. Math. Oxford Ser. (2) 15 (1964), 116-120 Zbl0124.38401MR161341
  2. F. Cohen, Communication privée, (2003) 
  3. E. Dror, Farjoun, Cellular spaces, null spaces and homotopy localization, 1622 (1996), Springer-Verlag, Berlin Zbl0842.55001MR1392221
  4. Y. Félix, S. Halperin, J.-M. Lemaire, J.-C. Thomas, Mod p loop space homology, Invent. Math 95 (1989), 247-262 Zbl0667.55007MR974903
  5. J. Grodal, The transcendence degree of the mod p cohomology of finite Postnikov systems, Stable and unstable homotopy.Toronto, Fields Inst. (1996), 111-130 Zbl0905.55012
  6. L. Kristensen, On secondary cohomology operations, Math. Scand 12 (1963), 57-82 Zbl0118.18303MR159333
  7. J. Lannes, et L. Schwartz, À propos de conjectures de Serre et Sullivan, Invent. Math 83 (1986), 593-603 Zbl0563.55011MR827370
  8. J. Lannes, et L. Schwartz, Sur les groupes d’homotopie des espaces dont la cohomologie modulo 2 est nilpotente, Israel J. Math 66 (1989), 260-273 Zbl0681.55012MR1017166
  9. C.A. McGibbon, J.A. Neisendorfer, On the homotopy groups of a finite-dimensional space, Comment. Math. Helv. 59 (1984), 253-257 Zbl0538.55010MR749108
  10. J. Milgram, The structure over the Steenrod algebra of some 2-stage Postnikov systems, Quart. J. Math. Oxford Ser. (2) 20 (1969), 161-169 Zbl0177.51501MR248811
  11. J.W. Milnor, J.C. Moore, On the structure of Hopf algebras, Annals of Mathematics (2) 81 (1965), 211-264 Zbl0163.28202MR174052
  12. J.-P. Serre, Cohomologie modulo 2 des complexes d’Eilenberg-MacLane, Comment. Math. Helv 27 (1953), 198-232 Zbl0052.19501MR60234
  13. L. Smith, The cohomology of stable two stage Postnikov systems, Illinois J. Math 11 (1967), 310-329 Zbl0171.21803MR208597
  14. N.E. Steenrod, Cohomology operations, Lectures by N.E. Steenrod written and revised by D.B.A. Epstein 50 (1962), Princeton University Press, Princeton Zbl0102.38104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.