A 3-polyGEM of nilpotent modulo 2 cohomology
- [1] LAGA, Institut Galilée, Université Paris Nord, 93430 Villetaneuse (France)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 4, page 1053-1072
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJiang, Donghua. "Un 3-polyGEM de cohomologie modulo 2 nilpotente." Annales de l’institut Fourier 54.4 (2004): 1053-1072. <http://eudml.org/doc/116130>.
@article{Jiang2004,
abstract = {On construit un contre-exemple de la conjecture suivante : si la cohomologie modulo 2
réduite d'un polyGEM 1-connexe quelconque est de type fini et si elle n'est pas réduite à
(0), alors elle contient au moins un élément non nilpotent.},
affiliation = {LAGA, Institut Galilée, Université Paris Nord, 93430 Villetaneuse (France)},
author = {Jiang, Donghua},
journal = {Annales de l’institut Fourier},
keywords = {polyGEM; Milgram spaces; Eilenberg-Moore spectral sequences},
language = {fre},
number = {4},
pages = {1053-1072},
publisher = {Association des Annales de l'Institut Fourier},
title = {Un 3-polyGEM de cohomologie modulo 2 nilpotente},
url = {http://eudml.org/doc/116130},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Jiang, Donghua
TI - Un 3-polyGEM de cohomologie modulo 2 nilpotente
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 4
SP - 1053
EP - 1072
AB - On construit un contre-exemple de la conjecture suivante : si la cohomologie modulo 2
réduite d'un polyGEM 1-connexe quelconque est de type fini et si elle n'est pas réduite à
(0), alors elle contient au moins un élément non nilpotent.
LA - fre
KW - polyGEM; Milgram spaces; Eilenberg-Moore spectral sequences
UR - http://eudml.org/doc/116130
ER -
References
top- E.H. Brown, F.P. Peterson, Whitehead products and cohomology operations, Quart. J. Math. Oxford Ser. (2) 15 (1964), 116-120 Zbl0124.38401MR161341
- F. Cohen, Communication privée, (2003)
- E. Dror, Farjoun, Cellular spaces, null spaces and homotopy localization, 1622 (1996), Springer-Verlag, Berlin Zbl0842.55001MR1392221
- Y. Félix, S. Halperin, J.-M. Lemaire, J.-C. Thomas, Mod loop space homology, Invent. Math 95 (1989), 247-262 Zbl0667.55007MR974903
- J. Grodal, The transcendence degree of the mod cohomology of finite Postnikov systems, Stable and unstable homotopy.Toronto, Fields Inst. (1996), 111-130 Zbl0905.55012
- L. Kristensen, On secondary cohomology operations, Math. Scand 12 (1963), 57-82 Zbl0118.18303MR159333
- J. Lannes, et L. Schwartz, À propos de conjectures de Serre et Sullivan, Invent. Math 83 (1986), 593-603 Zbl0563.55011MR827370
- J. Lannes, et L. Schwartz, Sur les groupes d’homotopie des espaces dont la cohomologie modulo est nilpotente, Israel J. Math 66 (1989), 260-273 Zbl0681.55012MR1017166
- C.A. McGibbon, J.A. Neisendorfer, On the homotopy groups of a finite-dimensional space, Comment. Math. Helv. 59 (1984), 253-257 Zbl0538.55010MR749108
- J. Milgram, The structure over the Steenrod algebra of some 2-stage Postnikov systems, Quart. J. Math. Oxford Ser. (2) 20 (1969), 161-169 Zbl0177.51501MR248811
- J.W. Milnor, J.C. Moore, On the structure of Hopf algebras, Annals of Mathematics (2) 81 (1965), 211-264 Zbl0163.28202MR174052
- J.-P. Serre, Cohomologie modulo des complexes d’Eilenberg-MacLane, Comment. Math. Helv 27 (1953), 198-232 Zbl0052.19501MR60234
- L. Smith, The cohomology of stable two stage Postnikov systems, Illinois J. Math 11 (1967), 310-329 Zbl0171.21803MR208597
- N.E. Steenrod, Cohomology operations, Lectures by N.E. Steenrod written and revised by D.B.A. Epstein 50 (1962), Princeton University Press, Princeton Zbl0102.38104
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.