Non-vanishing of class group L -functions at the central point

Valentin Blomer[1]

  • [1] University of Toronto, Department of Mathematics, 100 St. George Street, Toronto M5S 3G3, Ontario, (Canada)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 4, page 831-847
  • ISSN: 0373-0956

Abstract

top
Let K = ( - D ) be an imaginary quadratic field, and denote by h its class number. It is shown that there is an absolute constant c > 0 such that for sufficiently large D at least c · h p D ( 1 - p - 1 ) of the h distinct L -functions L K ( s , χ ) do not vanish at the central point s = 1 / 2 .

How to cite

top

Blomer, Valentin. "Non-vanishing of class group $L$-functions at the central point." Annales de l’institut Fourier 54.4 (2004): 831-847. <http://eudml.org/doc/116134>.

@article{Blomer2004,
abstract = {Let $K = \{\mathbb \{Q\}\}(\sqrt\{-D\})$ be an imaginary quadratic field, and denote by $h$ its class number. It is shown that there is an absolute constant $c&gt;0$ such that for sufficiently large $D$ at least $c \cdot h \prod _\{p \mid D\} (1-p^\{-1\})$ of the $h$ distinct $L$-functions $L_K(s, \chi )$ do not vanish at the central point $s = 1/2$.},
affiliation = {University of Toronto, Department of Mathematics, 100 St. George Street, Toronto M5S 3G3, Ontario, (Canada)},
author = {Blomer, Valentin},
journal = {Annales de l’institut Fourier},
keywords = {non-vanishing results; $L$-functions; imaginary quadratic fields; mollifier; -functions},
language = {eng},
number = {4},
pages = {831-847},
publisher = {Association des Annales de l'Institut Fourier},
title = {Non-vanishing of class group $L$-functions at the central point},
url = {http://eudml.org/doc/116134},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Blomer, Valentin
TI - Non-vanishing of class group $L$-functions at the central point
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 4
SP - 831
EP - 847
AB - Let $K = {\mathbb {Q}}(\sqrt{-D})$ be an imaginary quadratic field, and denote by $h$ its class number. It is shown that there is an absolute constant $c&gt;0$ such that for sufficiently large $D$ at least $c \cdot h \prod _{p \mid D} (1-p^{-1})$ of the $h$ distinct $L$-functions $L_K(s, \chi )$ do not vanish at the central point $s = 1/2$.
LA - eng
KW - non-vanishing results; $L$-functions; imaginary quadratic fields; mollifier; -functions
UR - http://eudml.org/doc/116134
ER -

References

top
  1. D. Bump, S. Friedberg, J. Hoffstein, Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic L -functions and their derivatives, Ann. of Math (2) 131 (1990), 53-127 Zbl0699.10039MR1038358
  2. D.A. Burgess, On character sums and L-series, Proc. London Math. Soc (2) 12 (1962), 193-206 Zbl0106.04004MR132733
  3. J.-M. Deshouillers, H. Iwaniec, The nonvanishing of Rankin-Selberg zeta-functions at special points, Contemp. Math 53 (1986), 51-95 Zbl0595.10025MR853553
  4. W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math 112 (1988), 73-90 Zbl0628.10029MR931205
  5. W. Duke, J. Friedlander, H. Iwaniec, Class group L -functions, Duke Math. J 79 (1995), 1-56 Zbl0838.11058MR1340293
  6. E. Fouvry, H. Iwaniec, Low-lying zeros of dihedral L -functions, Duke Math. J 116 (2003), 189-217 Zbl1028.11055MR1953291
  7. H. Iwaniec, P. Sarnak, The non-vanishing of central values of automorphic L -functions and the Landau-Siegel zero, Isr. J. Math 120 (2000), 155-177 Zbl0992.11037MR1815374
  8. N. Katz, P. Sarnak, Zeros of zeta-functions and symmetry, Bull. AMS 36 (1999), 1-26 Zbl0921.11047MR1640151
  9. E. Kowalski, P. Michel, J. VanderKam, Mollification of the fourth moment of automorphic L -functions and arithmetic applications, Invent. Math 142 (2000), 95-151 Zbl1054.11026MR1784797
  10. E. Kowalski, P. Michel, J. VanderKam, Non-vanishing of high derivatives of automorphic L -functions at the center of the critical strip, J. Reine Angew. Math 526 (2000), 1-34 Zbl1020.11033MR1778299
  11. M.R. Murty, V.K. Murty, Mean values of derivatives of modular L -series, Ann. of Math (2) 133 (1991), 447-475 Zbl0745.11032MR1109350
  12. M.R. Murty, V.K. Murty, Non-vanishing of L -functions and applications, 157 (1997), Birkhäuser, Basel Zbl0916.11001MR1482805
  13. A. Perelli, J. Pomykala, Averages over twisted elliptic L -functions, Acta Arith 80 (1997), 149-163 Zbl0878.11022MR1450922
  14. J. Pintz, Elementary methods in the theory of L -functions II, Acta Arith 31 (1976), 273-306 Zbl0307.10041MR485730
  15. D. Rohrlich, Nonvanishing of L -functions for G L ( 2 ) , Invent. Math 97 (1989), 383-401 Zbl0677.10020MR1001846
  16. G. Shimura, On modular forms of half-integral weight, Ann of Math (2) 97 (1973), 440-481 Zbl0266.10022MR332663
  17. K. Soundararajan, Non-vanishing of quadratic Dirichlet L -functions at s = 1 2 , Ann. of Math (2) 152 (2000), 447-488 Zbl0964.11034
  18. J.-L. Waldspurger, Sur le coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60 (1981), 375-484 Zbl0431.10015MR646366

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.