A spectral analysis of automorphic distributions and Poisson summation formulas
- [1] Université de Reims, Mathématiques (UMR 6056), Moulin de la Housse, B.P.1039, 51687 REIMS Cedex 2 (France)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 5, page 1151-1196
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topUnterberger, André. "A spectral analysis of automorphic distributions and Poisson summation formulas." Annales de l’institut Fourier 54.5 (2004): 1151-1196. <http://eudml.org/doc/116141>.
@article{Unterberger2004,
abstract = {Automorphic distributions are distributions on $\{\mathbb \{R\}\}^d$, invariant under the linear
action of the group $SL(d,\{\mathbb \{Z\}\})$. Combs are characterized by the additional
requirement of being measures supported in $\{\mathbb \{Z\}\}^d$: their decomposition into
homogeneous components involves the family $(\{\mathfrak \{E\}\}^d_\{i\lambda \})_\{\lambda \in \{\mathbb \{R\}\}\}$, of Eisenstein distributions, and the coefficients of the decomposition are given as
Dirichlet series $\{\mathcal \{D\}\}(s)$. Functional equations of the usual (Hecke) kind relative
to $\{\mathcal \{D\}\}(s)$ turn out to be equivalent to the invariance of the comb under some
modification of the Fourier transformation. This leads to an automatic way to associate
Poisson-like (or Voronoï-like) summation formulas to (holomorphic or non-holomorphic)
modular forms},
affiliation = {Université de Reims, Mathématiques (UMR 6056), Moulin de la Housse, B.P.1039, 51687 REIMS Cedex 2 (France)},
author = {Unterberger, André},
journal = {Annales de l’institut Fourier},
keywords = {automorphic distributions; summation formulas; Voronoï's formula; Poisson–like summation formulas},
language = {eng},
number = {5},
pages = {1151-1196},
publisher = {Association des Annales de l'Institut Fourier},
title = {A spectral analysis of automorphic distributions and Poisson summation formulas},
url = {http://eudml.org/doc/116141},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Unterberger, André
TI - A spectral analysis of automorphic distributions and Poisson summation formulas
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 5
SP - 1151
EP - 1196
AB - Automorphic distributions are distributions on ${\mathbb {R}}^d$, invariant under the linear
action of the group $SL(d,{\mathbb {Z}})$. Combs are characterized by the additional
requirement of being measures supported in ${\mathbb {Z}}^d$: their decomposition into
homogeneous components involves the family $({\mathfrak {E}}^d_{i\lambda })_{\lambda \in {\mathbb {R}}}$, of Eisenstein distributions, and the coefficients of the decomposition are given as
Dirichlet series ${\mathcal {D}}(s)$. Functional equations of the usual (Hecke) kind relative
to ${\mathcal {D}}(s)$ turn out to be equivalent to the invariance of the comb under some
modification of the Fourier transformation. This leads to an automatic way to associate
Poisson-like (or Voronoï-like) summation formulas to (holomorphic or non-holomorphic)
modular forms
LA - eng
KW - automorphic distributions; summation formulas; Voronoï's formula; Poisson–like summation formulas
UR - http://eudml.org/doc/116141
ER -
References
top- D. Bump, Automorphic Forms and Representations, Cambridge Series in Adv. Math 55 (1996) Zbl0868.11022MR1431508
- H.M. Edwards, Riemann's zeta function, (1974), Aca. Press, New York-London Zbl1113.11303
- G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, (1962), Oxford Univ. Press, London Zbl0423.10001MR568909
- D.A. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J 43 (1976), 441-482 Zbl0346.10010MR414490
- H. Iwaniec, Introduction to the spectral theory of automorphic forms, Revista Matemática Iberoamericana, Madrid (1995) Zbl0847.11028MR1325466
- H. Iwaniec, Topics in Classical Automorphic Forms, 17 (1997), A.M.S., Providence Zbl0905.11023MR1474964
- T. Kubota, Elementary Theory of Eisenstein Series, (1973), Halsted Press, New York Zbl0268.10012MR429749
- P.D. Lax, R.S. Phillips, Scattering Theory for Automorphic Functions, 87 (1976), Princeton Univ.Press Zbl0362.10022MR562288
- W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and theorems for the special functions of mathematical physics, (1966), Springer-Verlag, Berlin Zbl0143.08502MR232968
- A. Ogg, Modular Forms and Dirichlet Series, (1969), Benjamin Inc., New York-Amsterdam Zbl0191.38101MR256993
- A. Selberg, On the Estimation of Fourier Coefficients of Modular Forms, Proc. Symp. Pure Math 8 (1963), 1-15 Zbl0142.33903MR182610
- A. Selberg, Old and new conjectures and results about a class of Dirichlet series, Proc. of the Amalfi Conf. 1989, Univ. of Salerno (1992) Zbl0787.11037
- J.P. Serre, Cours d'Arithmétique, (1970), Presses Univ. de France, Paris Zbl0225.12002MR255476
- G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, (1995), Soc. Math. France, Paris Zbl0880.11001MR1366197
- A. Terras, Harmonic analysis on symmetric spaces and applications. I., (1985), Springer-Verlag, New York-Berlin-Heidelberg-Tokyo Zbl0574.10029MR791406
- A. Terras, Harmonic analysis on symmetric spaces and applications. II., (1988), Springer-Verlag, New York-Berlin-Heidelberg-Tokyo Zbl0668.10033MR955271
- A. Unterberger, Quantization and non-holomorphic modular forms, 1742, Springer-Verlag, Berlin-Heidelberg Zbl0970.11014MR1783191
- A. Unterberger, Automorphic pseudodifferential analysis and higher-level Weyl calculi, 209 (2002), Birkhäuser, Basel-Boston-Berlin Zbl1018.11018MR1956320
- G. VoronoÏ, Sur le développement, à l’aide des fonctions cylindriques, des sommes doubles , Ver. Math. Kongr. Heidelberg (1904), 241-245
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.