Restrictions of smooth functions to a closed subset

Shuzo Izumi[1]

  • [1] Kinki University,Department of Mathematics, Kowakae Higashi-Osaka 577-8502 (Japan)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 6, page 1811-1826
  • ISSN: 0373-0956

Abstract

top
We first provide an approach to the conjecture of Bierstone-Milman-Pawłucki on Whitney’s problem on C d extendability of functions. For example, the conjecture is affirmative for classical fractal sets. Next, we give a sharpened form of Spallek’s theorem on flatness.

How to cite

top

Izumi, Shuzo. "Restrictions of smooth functions to a closed subset." Annales de l’institut Fourier 54.6 (2004): 1811-1826. <http://eudml.org/doc/116160>.

@article{Izumi2004,
abstract = {We first provide an approach to the conjecture of Bierstone-Milman-Pawłucki on Whitney’s problem on $C^d$ extendability of functions. For example, the conjecture is affirmative for classical fractal sets. Next, we give a sharpened form of Spallek’s theorem on flatness.},
affiliation = {Kinki University,Department of Mathematics, Kowakae Higashi-Osaka 577-8502 (Japan)},
author = {Izumi, Shuzo},
journal = {Annales de l’institut Fourier},
keywords = {Whitney's problem; Spallek's theorem; smooth functions; higher order paratangent bundle; flatness; multi-dimensional Vandermonde matrix; self-similar set; Whitney problem; Spallek theorem},
language = {eng},
number = {6},
pages = {1811-1826},
publisher = {Association des Annales de l'Institut Fourier},
title = {Restrictions of smooth functions to a closed subset},
url = {http://eudml.org/doc/116160},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Izumi, Shuzo
TI - Restrictions of smooth functions to a closed subset
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 6
SP - 1811
EP - 1826
AB - We first provide an approach to the conjecture of Bierstone-Milman-Pawłucki on Whitney’s problem on $C^d$ extendability of functions. For example, the conjecture is affirmative for classical fractal sets. Next, we give a sharpened form of Spallek’s theorem on flatness.
LA - eng
KW - Whitney's problem; Spallek's theorem; smooth functions; higher order paratangent bundle; flatness; multi-dimensional Vandermonde matrix; self-similar set; Whitney problem; Spallek theorem
UR - http://eudml.org/doc/116160
ER -

References

top
  1. A.A. Akopyan, A.A. Saakyan, Multivariate splines and polynomial interpolation, Russian Math. Surveys 48 (1993), 1-72 Zbl0813.41027MR1258755
  2. E. Bierstone, P. Milman, W. Pawłucki, Composite differentiable functions, Duke Math. J. 83 (1996), 607-620 Zbl0868.32011
  3. E. Bierstone, P. Milman, W. Pawłucki, Differentiable functions defined in closed sets. A problem of Whitney, Invent. Math. 151 (2003), 329-352 Zbl1031.58002
  4. G. Bouligand, Introduction à la géométrie infinitésimale directe, (1932), Vuibert, Paris Zbl0005.37501
  5. G. Choquet, Convergence, Ann. Inst. Fourier 23 (1948), 57-112 Zbl0031.28101
  6. K. Falconer, Techniques in fractal geometry, (1997), John-Wiley and Sons Zbl0869.28003MR1449135
  7. G. Glaeser, Études de quelques algèbres tayloriennes, J. Anal. Math. 6 (1958), 1-124 Zbl0091.28103MR101294
  8. G. Glaeser, L'interpolation des fonctions différentiables de plusieurs variables, Proceedings of Liverpool singularities symposium II 209 (1971), 1-33, Springer, Berlin Zbl0214.08001
  9. S. Izumi, Flatness of differentiable functions along a subset of a real analytic set, J. Anal. Math. 86 (2002), 235-246 Zbl1032.32007MR1894483
  10. P. Kergin, A natural interpolation of K functions, J. Approx. Theory 29 (1980), 278-293 Zbl0492.41008MR598722
  11. C.A. Micchelli, P. Milman, A formula for Kergin interpolation in k , J. Approx. Theory 29 (1980), 294-296 Zbl0454.41002MR598723
  12. K. Spallek, -Platte Funktionen auf semianalytischen Mengen, Math. Ann. 227 (1977), 277-286 Zbl0333.32025MR450630
  13. H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89 Zbl0008.24902MR1501735
  14. H. Whitney, Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc. 36 (1934), 369-387 Zbl0009.20803MR1501749
  15. M. Yamaguti, M. Hata, J. Kigami, Mathematics of Fractals, 167 (1997), Amer. Math. Soc., Providence Zbl0888.58030MR1471705

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.