Restrictions of smooth functions to a closed subset
Shuzo Izumi[1]
- [1] Kinki University,Department of Mathematics, Kowakae Higashi-Osaka 577-8502 (Japan)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 6, page 1811-1826
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- A.A. Akopyan, A.A. Saakyan, Multivariate splines and polynomial interpolation, Russian Math. Surveys 48 (1993), 1-72 Zbl0813.41027MR1258755
- E. Bierstone, P. Milman, W. Pawłucki, Composite differentiable functions, Duke Math. J. 83 (1996), 607-620 Zbl0868.32011
- E. Bierstone, P. Milman, W. Pawłucki, Differentiable functions defined in closed sets. A problem of Whitney, Invent. Math. 151 (2003), 329-352 Zbl1031.58002
- G. Bouligand, Introduction à la géométrie infinitésimale directe, (1932), Vuibert, Paris Zbl0005.37501
- G. Choquet, Convergence, Ann. Inst. Fourier 23 (1948), 57-112 Zbl0031.28101
- K. Falconer, Techniques in fractal geometry, (1997), John-Wiley and Sons Zbl0869.28003MR1449135
- G. Glaeser, Études de quelques algèbres tayloriennes, J. Anal. Math. 6 (1958), 1-124 Zbl0091.28103MR101294
- G. Glaeser, L'interpolation des fonctions différentiables de plusieurs variables, Proceedings of Liverpool singularities symposium II 209 (1971), 1-33, Springer, Berlin Zbl0214.08001
- S. Izumi, Flatness of differentiable functions along a subset of a real analytic set, J. Anal. Math. 86 (2002), 235-246 Zbl1032.32007MR1894483
- P. Kergin, A natural interpolation of functions, J. Approx. Theory 29 (1980), 278-293 Zbl0492.41008MR598722
- C.A. Micchelli, P. Milman, A formula for Kergin interpolation in , J. Approx. Theory 29 (1980), 294-296 Zbl0454.41002MR598723
- K. Spallek, -Platte Funktionen auf semianalytischen Mengen, Math. Ann. 227 (1977), 277-286 Zbl0333.32025MR450630
- H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89 Zbl0008.24902MR1501735
- H. Whitney, Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc. 36 (1934), 369-387 Zbl0009.20803MR1501749
- M. Yamaguti, M. Hata, J. Kigami, Mathematics of Fractals, 167 (1997), Amer. Math. Soc., Providence Zbl0888.58030MR1471705