Determination of the pluripolar hull of graphs of certain holomorphic functions
Armen Edigarian[1]; Jan Wiegerinck
- [1] Jagiellonian University, Institute of Mathematics, Reymonta 4/526, 30-059 Kraków (Poland), University of Amsterdam, Faculty of Mathematics, Plantage Muidergracht 24, 1018 TV, Amsterdam (The Netherlands)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 6, page 2085-2104
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEdigarian, Armen, and Wiegerinck, Jan. "Determination of the pluripolar hull of graphs of certain holomorphic functions." Annales de l’institut Fourier 54.6 (2004): 2085-2104. <http://eudml.org/doc/116168>.
@article{Edigarian2004,
abstract = {Let $A$ be a closed polar subset of a domain $D$ in $\mathbb \{C\}$. We give a complete
description of the pluripolar hull $\Gamma ^*_\{D\times \mathbb \{C\}\}$ of the graph $\Gamma $ of a
holomorphic function defined on $D\setminus A$. To achieve this, we prove for
pluriharmonic measure certain semi-continuity properties and a localization principle.},
affiliation = {Jagiellonian University, Institute of Mathematics, Reymonta 4/526, 30-059 Kraków (Poland), University of Amsterdam, Faculty of Mathematics, Plantage Muidergracht 24, 1018 TV, Amsterdam (The Netherlands)},
author = {Edigarian, Armen, Wiegerinck, Jan},
journal = {Annales de l’institut Fourier},
keywords = {Plurisubharmonic function; pluripolar hull; complete pluripolar set; pluriharmonic measure; graph of holomorphic function; plurisubharmonic function},
language = {eng},
number = {6},
pages = {2085-2104},
publisher = {Association des Annales de l'Institut Fourier},
title = {Determination of the pluripolar hull of graphs of certain holomorphic functions},
url = {http://eudml.org/doc/116168},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Edigarian, Armen
AU - Wiegerinck, Jan
TI - Determination of the pluripolar hull of graphs of certain holomorphic functions
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 6
SP - 2085
EP - 2104
AB - Let $A$ be a closed polar subset of a domain $D$ in $\mathbb {C}$. We give a complete
description of the pluripolar hull $\Gamma ^*_{D\times \mathbb {C}}$ of the graph $\Gamma $ of a
holomorphic function defined on $D\setminus A$. To achieve this, we prove for
pluriharmonic measure certain semi-continuity properties and a localization principle.
LA - eng
KW - Plurisubharmonic function; pluripolar hull; complete pluripolar set; pluriharmonic measure; graph of holomorphic function; plurisubharmonic function
UR - http://eudml.org/doc/116168
ER -
References
top- A. Edigarian, Pluripolar hulls and holomorphic coverings, Israel J. Math 130 (2002), 77-92 Zbl1011.32023MR1919372
- A. Edigarian, J. Wiegerinck, Graphs that are not complete pluripolar, Proc. Amer. Math. Soc 131 (2003), 2459-2465 Zbl1026.32063MR1974644
- A. Edigarian, J. Wiegerinck, The pluripolar hull of the graph of a holomorphic function with polar singularities, Indiana Univ. Math. J 52 (2003), 1663-1680 Zbl1047.32021MR2021052
- T.W. Gamelin, J. Garnett, Distinguished homomorphisms and fiber algebras, Trans. Amer. Math. Soc (1970), 455-474 Zbl0212.15302MR303296
- M. Klimek, Pluripotential Theory, 6 (1991), Clarendon Press Zbl0742.31001MR1150978
- N. Levenberg, G. Martin, E.A. Poletsky, Analytic disks and pluripolar sets, Indiana Univ. Math. J 41 (1992), 515-532 Zbl0763.32010MR1183357
- N. Levenberg, E.A. Poletsky, Pluripolar hulls, Michigan Math. J 46 (1999), 151-162 Zbl0963.32024MR1682895
- K. Noshiro, Cluster sets, (1960), Springer-Verlag Zbl0090.28801MR133464
- E. Poletsky, Holomorphic currents, Indiana Univ. Math. J 42 (1993), 85-144 Zbl0811.32010MR1218708
- E. Poletsky, Analytic geometry on compacta in , Math. Zeitschrift 222 (1996), 407-424 Zbl0849.32009MR1400200
- E. Poletsky, personal communication, (2003)
- Th. Ransford, Potential Theory in the Complex Plane, (1994), Cambridge University Press Zbl0828.31001MR1334766
- J. Siciak, Pluripolar sets and pseudocontinuation, Complex Analysis and Dynamical Systems II (Nahariya) (2003), AMS Zbl1085.32015
- J. Wiegerinck, [unknown], Ark. Mat 38 (2000), 201-208 Zbl1021.32013MR1749366
- J. Wiegerinck, Graphs of holomorphic functions with isolated singularities are complete pluripolar, Michigan Math. J 47 (2000), 191-197 Zbl0971.32015MR1755265
- J. Wiegerinck, Pluripolar sets: hulls and completeness, Actes des rencontres d'analyse complexe Atlantique (2000) Zbl1032.32022
- L. Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc 144 (1969), 241-270 Zbl0188.45002MR252665
- A. Zeriahi, Ensembles pluripolaires exceptionnels pour la croissance partielle des fonctions holomorphes, Ann. Polon. Math 50 (1989), 81-91 Zbl0688.32004MR1016623
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.