Determination of the pluripolar hull of graphs of certain holomorphic functions

Armen Edigarian[1]; Jan Wiegerinck

  • [1] Jagiellonian University, Institute of Mathematics, Reymonta 4/526, 30-059 Kraków (Poland), University of Amsterdam, Faculty of Mathematics, Plantage Muidergracht 24, 1018 TV, Amsterdam (The Netherlands)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 6, page 2085-2104
  • ISSN: 0373-0956

Abstract

top
Let A be a closed polar subset of a domain D in . We give a complete description of the pluripolar hull Γ D × * of the graph Γ of a holomorphic function defined on D A . To achieve this, we prove for pluriharmonic measure certain semi-continuity properties and a localization principle.

How to cite

top

Edigarian, Armen, and Wiegerinck, Jan. "Determination of the pluripolar hull of graphs of certain holomorphic functions." Annales de l’institut Fourier 54.6 (2004): 2085-2104. <http://eudml.org/doc/116168>.

@article{Edigarian2004,
abstract = {Let $A$ be a closed polar subset of a domain $D$ in $\mathbb \{C\}$. We give a complete description of the pluripolar hull $\Gamma ^*_\{D\times \mathbb \{C\}\}$ of the graph $\Gamma $ of a holomorphic function defined on $D\setminus A$. To achieve this, we prove for pluriharmonic measure certain semi-continuity properties and a localization principle.},
affiliation = {Jagiellonian University, Institute of Mathematics, Reymonta 4/526, 30-059 Kraków (Poland), University of Amsterdam, Faculty of Mathematics, Plantage Muidergracht 24, 1018 TV, Amsterdam (The Netherlands)},
author = {Edigarian, Armen, Wiegerinck, Jan},
journal = {Annales de l’institut Fourier},
keywords = {Plurisubharmonic function; pluripolar hull; complete pluripolar set; pluriharmonic measure; graph of holomorphic function; plurisubharmonic function},
language = {eng},
number = {6},
pages = {2085-2104},
publisher = {Association des Annales de l'Institut Fourier},
title = {Determination of the pluripolar hull of graphs of certain holomorphic functions},
url = {http://eudml.org/doc/116168},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Edigarian, Armen
AU - Wiegerinck, Jan
TI - Determination of the pluripolar hull of graphs of certain holomorphic functions
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 6
SP - 2085
EP - 2104
AB - Let $A$ be a closed polar subset of a domain $D$ in $\mathbb {C}$. We give a complete description of the pluripolar hull $\Gamma ^*_{D\times \mathbb {C}}$ of the graph $\Gamma $ of a holomorphic function defined on $D\setminus A$. To achieve this, we prove for pluriharmonic measure certain semi-continuity properties and a localization principle.
LA - eng
KW - Plurisubharmonic function; pluripolar hull; complete pluripolar set; pluriharmonic measure; graph of holomorphic function; plurisubharmonic function
UR - http://eudml.org/doc/116168
ER -

References

top
  1. A. Edigarian, Pluripolar hulls and holomorphic coverings, Israel J. Math 130 (2002), 77-92 Zbl1011.32023MR1919372
  2. A. Edigarian, J. Wiegerinck, Graphs that are not complete pluripolar, Proc. Amer. Math. Soc 131 (2003), 2459-2465 Zbl1026.32063MR1974644
  3. A. Edigarian, J. Wiegerinck, The pluripolar hull of the graph of a holomorphic function with polar singularities, Indiana Univ. Math. J 52 (2003), 1663-1680 Zbl1047.32021MR2021052
  4. T.W. Gamelin, J. Garnett, Distinguished homomorphisms and fiber algebras, Trans. Amer. Math. Soc (1970), 455-474 Zbl0212.15302MR303296
  5. M. Klimek, Pluripotential Theory, 6 (1991), Clarendon Press Zbl0742.31001MR1150978
  6. N. Levenberg, G. Martin, E.A. Poletsky, Analytic disks and pluripolar sets, Indiana Univ. Math. J 41 (1992), 515-532 Zbl0763.32010MR1183357
  7. N. Levenberg, E.A. Poletsky, Pluripolar hulls, Michigan Math. J 46 (1999), 151-162 Zbl0963.32024MR1682895
  8. K. Noshiro, Cluster sets, (1960), Springer-Verlag Zbl0090.28801MR133464
  9. E. Poletsky, Holomorphic currents, Indiana Univ. Math. J 42 (1993), 85-144 Zbl0811.32010MR1218708
  10. E. Poletsky, Analytic geometry on compacta in n , Math. Zeitschrift 222 (1996), 407-424 Zbl0849.32009MR1400200
  11. E. Poletsky, personal communication, (2003) 
  12. Th. Ransford, Potential Theory in the Complex Plane, (1994), Cambridge University Press Zbl0828.31001MR1334766
  13. J. Siciak, Pluripolar sets and pseudocontinuation, Complex Analysis and Dynamical Systems II (Nahariya) (2003), AMS Zbl1085.32015
  14. J. Wiegerinck, [unknown], Ark. Mat 38 (2000), 201-208 Zbl1021.32013MR1749366
  15. J. Wiegerinck, Graphs of holomorphic functions with isolated singularities are complete pluripolar, Michigan Math. J 47 (2000), 191-197 Zbl0971.32015MR1755265
  16. J. Wiegerinck, Pluripolar sets: hulls and completeness, Actes des rencontres d'analyse complexe Atlantique (2000) Zbl1032.32022
  17. L. Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc 144 (1969), 241-270 Zbl0188.45002MR252665
  18. A. Zeriahi, Ensembles pluripolaires exceptionnels pour la croissance partielle des fonctions holomorphes, Ann. Polon. Math 50 (1989), 81-91 Zbl0688.32004MR1016623

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.