# An application of classical invariant theory to identifiability in nonparametric mixtures

Ryan Elmore^{[1]}; Peter Hall; Amnon Neeman

- [1] Australian National University, centre for Mathematics and its Applications, Mathematical Sciences Institute, John Dedman Building, Canberra ACT 0200 (AUSTRALIE)

Annales de l’institut Fourier (2005)

- Volume: 55, Issue: 1, page 1-28
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topElmore, Ryan, Hall, Peter, and Neeman, Amnon. "An application of classical invariant theory to identifiability in nonparametric mixtures." Annales de l’institut Fourier 55.1 (2005): 1-28. <http://eudml.org/doc/116185>.

@article{Elmore2005,

abstract = {It is known that the identifiability of multivariate mixtures reduces to a question in
algebraic geometry. We solve the question by studying certain generators in the ring of
polynomials in vector variables, invariant under the action of the symmetric group.},

affiliation = {Australian National University, centre for Mathematics and its Applications, Mathematical Sciences Institute, John Dedman Building, Canberra ACT 0200 (AUSTRALIE)},

author = {Elmore, Ryan, Hall, Peter, Neeman, Amnon},

journal = {Annales de l’institut Fourier},

keywords = {Mixture model; birational; invariant},

language = {eng},

number = {1},

pages = {1-28},

publisher = {Association des Annales de l'Institut Fourier},

title = {An application of classical invariant theory to identifiability in nonparametric mixtures},

url = {http://eudml.org/doc/116185},

volume = {55},

year = {2005},

}

TY - JOUR

AU - Elmore, Ryan

AU - Hall, Peter

AU - Neeman, Amnon

TI - An application of classical invariant theory to identifiability in nonparametric mixtures

JO - Annales de l’institut Fourier

PY - 2005

PB - Association des Annales de l'Institut Fourier

VL - 55

IS - 1

SP - 1

EP - 28

AB - It is known that the identifiability of multivariate mixtures reduces to a question in
algebraic geometry. We solve the question by studying certain generators in the ring of
polynomials in vector variables, invariant under the action of the symmetric group.

LA - eng

KW - Mixture model; birational; invariant

UR - http://eudml.org/doc/116185

ER -

## References

top- M. V. Catalisano, A. V. Geramita, A. Gimigliano, Ranks of tensors, secant varieties of Segre varieties and fat points, Linear Algebra Appl. 355 (2002), 263-285 Zbl1059.14061MR1930149
- M. V. Catalisano, A. V. Geramita, A. Gimigliano, Erratum to ``Ranks of tensors, secant varieties of Segre varieties and fat points'', Linear Algebra Appl. 367 (2003), 347-348 Zbl1073.14550MR1976931
- L. D. Garcia, M. Stillman, B. Sturmfels, Algebraic geometry of Bayesian networks Zbl1126.68102
- I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, (1994), Birkhäuser, Boston, MA Zbl0827.14036MR1264417
- L. A. Goodman, Exploratory latent structure analysis using both identifiable and unidentifiable models, Biometrika 61 (1974), 215-231 Zbl0281.62057MR370936
- P. Hall, X.-H. Zhou, Nonparametric estimation of component distributions in a multivariate mixture, Ann. Statist. 31 (2003), 201-224 Zbl1018.62021MR1962504
- P. Hall, A. Neeman, R. Pakyari, R. Elmore, Nonparametric inference in multivariate mixtures Zbl1152.62327
- J. M. Landsberg, L. Manivel, On the ideals of secant varieties to Segre varieties Zbl1068.14068
- B.G. Lindsay, Mixture Models: Theory Geometry and Applications, (1995), Hayward, Institute of Mathematical Statistics Zbl1163.62326
- G.J. Mac, Lachlan, D. Peel, Finite Mixture Models, (2000), John Wiley & Sons
- A. Mattuck, The field of multisymmetric functions, Proc. Amer. Math. Soc. 19 (1968), 764-765 Zbl0159.05303MR225774
- M. Nagata, On the normality of the Chow variety of positive $0$-cycles of degree $m$ in an algebraic variety, 29 (1955), 165-176 Zbl0066.14701
- A. Neeman, Zero cycles in ${\mathbb{P}}^{n}$, Advances in Math. 89 (1991), 217-227 Zbl0787.14004MR1128613
- E. Netto, Vorlesungen über Algebra, (1896), Leipzig Zbl27.0058.01
- H. Teicher, Identifiability of mixtures, Ann. Math. Statist. 32 (1961), 244-248 Zbl0146.39302MR120677
- H. Teicher, Identifiability of finite mixtures, Ann. Math. Statist. 34 (1963), 1265-1269 Zbl0137.12704MR155376
- D.M. Titterington, A.F. Smith, U.E. Makov, Statistical Analysis of Finite Mixture Distributions, (1985), John Wiley & Sons Zbl0646.62013MR838090
- H. Weyl, The Classical Groups. Their Invariants and Representations, (1939), Princeton University Press, Princeton N.J. Zbl0020.20601MR1488158
- S.J. Yakowitz, J. D. Spragins, On the identifiability of finite mixtures, Ann. Math. Statist. 39 (1968), 209-214 Zbl0155.25703MR224204

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.