An application of classical invariant theory to identifiability in nonparametric mixtures
Ryan Elmore[1]; Peter Hall; Amnon Neeman
- [1] Australian National University, centre for Mathematics and its Applications, Mathematical Sciences Institute, John Dedman Building, Canberra ACT 0200 (AUSTRALIE)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 1, page 1-28
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topElmore, Ryan, Hall, Peter, and Neeman, Amnon. "An application of classical invariant theory to identifiability in nonparametric mixtures." Annales de l’institut Fourier 55.1 (2005): 1-28. <http://eudml.org/doc/116185>.
@article{Elmore2005,
abstract = {It is known that the identifiability of multivariate mixtures reduces to a question in
algebraic geometry. We solve the question by studying certain generators in the ring of
polynomials in vector variables, invariant under the action of the symmetric group.},
affiliation = {Australian National University, centre for Mathematics and its Applications, Mathematical Sciences Institute, John Dedman Building, Canberra ACT 0200 (AUSTRALIE)},
author = {Elmore, Ryan, Hall, Peter, Neeman, Amnon},
journal = {Annales de l’institut Fourier},
keywords = {Mixture model; birational; invariant},
language = {eng},
number = {1},
pages = {1-28},
publisher = {Association des Annales de l'Institut Fourier},
title = {An application of classical invariant theory to identifiability in nonparametric mixtures},
url = {http://eudml.org/doc/116185},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Elmore, Ryan
AU - Hall, Peter
AU - Neeman, Amnon
TI - An application of classical invariant theory to identifiability in nonparametric mixtures
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 1
SP - 1
EP - 28
AB - It is known that the identifiability of multivariate mixtures reduces to a question in
algebraic geometry. We solve the question by studying certain generators in the ring of
polynomials in vector variables, invariant under the action of the symmetric group.
LA - eng
KW - Mixture model; birational; invariant
UR - http://eudml.org/doc/116185
ER -
References
top- M. V. Catalisano, A. V. Geramita, A. Gimigliano, Ranks of tensors, secant varieties of Segre varieties and fat points, Linear Algebra Appl. 355 (2002), 263-285 Zbl1059.14061MR1930149
- M. V. Catalisano, A. V. Geramita, A. Gimigliano, Erratum to ``Ranks of tensors, secant varieties of Segre varieties and fat points'', Linear Algebra Appl. 367 (2003), 347-348 Zbl1073.14550MR1976931
- L. D. Garcia, M. Stillman, B. Sturmfels, Algebraic geometry of Bayesian networks Zbl1126.68102
- I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, (1994), Birkhäuser, Boston, MA Zbl0827.14036MR1264417
- L. A. Goodman, Exploratory latent structure analysis using both identifiable and unidentifiable models, Biometrika 61 (1974), 215-231 Zbl0281.62057MR370936
- P. Hall, X.-H. Zhou, Nonparametric estimation of component distributions in a multivariate mixture, Ann. Statist. 31 (2003), 201-224 Zbl1018.62021MR1962504
- P. Hall, A. Neeman, R. Pakyari, R. Elmore, Nonparametric inference in multivariate mixtures Zbl1152.62327
- J. M. Landsberg, L. Manivel, On the ideals of secant varieties to Segre varieties Zbl1068.14068
- B.G. Lindsay, Mixture Models: Theory Geometry and Applications, (1995), Hayward, Institute of Mathematical Statistics Zbl1163.62326
- G.J. Mac, Lachlan, D. Peel, Finite Mixture Models, (2000), John Wiley & Sons
- A. Mattuck, The field of multisymmetric functions, Proc. Amer. Math. Soc. 19 (1968), 764-765 Zbl0159.05303MR225774
- M. Nagata, On the normality of the Chow variety of positive -cycles of degree in an algebraic variety, 29 (1955), 165-176 Zbl0066.14701
- A. Neeman, Zero cycles in , Advances in Math. 89 (1991), 217-227 Zbl0787.14004MR1128613
- E. Netto, Vorlesungen über Algebra, (1896), Leipzig Zbl27.0058.01
- H. Teicher, Identifiability of mixtures, Ann. Math. Statist. 32 (1961), 244-248 Zbl0146.39302MR120677
- H. Teicher, Identifiability of finite mixtures, Ann. Math. Statist. 34 (1963), 1265-1269 Zbl0137.12704MR155376
- D.M. Titterington, A.F. Smith, U.E. Makov, Statistical Analysis of Finite Mixture Distributions, (1985), John Wiley & Sons Zbl0646.62013MR838090
- H. Weyl, The Classical Groups. Their Invariants and Representations, (1939), Princeton University Press, Princeton N.J. Zbl0020.20601MR1488158
- S.J. Yakowitz, J. D. Spragins, On the identifiability of finite mixtures, Ann. Math. Statist. 39 (1968), 209-214 Zbl0155.25703MR224204
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.